很重要。特定的,详细的信息,这些信息表征了应用如何影响局部原子结构,如何改变效果的相位稳定性以及诱导结构性变化的效果效果的效果效果仍然未知。使用低温微波辐射(MWR)的早期工作,使用低能量EMELDS 2.4 - 2.5 GHz的辅助合成,发现相对于常规水热合成,MWR生长的材料中仍然存在其他结构性疾病。14最近,X射线同步加速器研究表明,MWR辅助的Ag纳米颗粒的反应动力学在没有MWR暴露的情况下与动力学显着,这表明EMELDS具有改变相变的能力。15此外,在氧化物纳米颗粒合成过程中,MWR暴露在uence极性键和离子物种中可以表明结构的ELD驱动的变化可能有助于促进观察到的快速,低温相的形成。16在电动ELD辅助烧结(灰)实验中,在该体验中,DC或AC电动eLD在陶瓷材料上施加,各向异性晶格的扩展为3 mol%yttria stria-stria-stabilized Zro 2和CEO 2和CEO 2与缺陷产生一致。17,18电动ELD的应用还导致高氧原子位移参数归因于氧缺陷的存在,在TiO 2、20中向下质量宏观巨质阶段的19期转变,并改善了由于tio 2的改善,这是由于Eld诱导的堆叠缺陷所致。21这些研究代表了越来越多的文献报道,报告了对材料的多尺度效应,但它们并未将外部参数直接连接到局部原子结构和相位稳定性的变化。
在这种情况下,电流通过加热元件,加热元件被加热(通过焦耳加热)并因此发光。加热元件发出的光被储能材料吸收,因此在充电过程中储能材料也会升温。由于温度高,储能材料会发光,需要时光可以通过光伏技术将光转换回电能,见图 1。在这种类型的储能系统中,光子用于将储能材料从相当低的温度加热到高温,由于材料的热容量,可以储存大量的能量。因此,这种类型的储能可以具有高能量密度,与锂离子电池相似甚至更高。 [13] 由于储能基于电和光子之间的转换,因此这种类型的电池可以称为“光子电池” [13] 或“光子辉光电池”,因为热的储能材料会发光。这类电池中的储能材料可以由多种不同的材料制成,因此,廉价且丰富的储能材料可以制成非常低成本和大规模的电池。 [13] 例如,不同的氧化物在高温下稳定,如 Al 2 O 3 、 MgO、SiO 2 和 ZrO 2 ,或这些氧化物的混合物,也常用作高温炉中的“燃料砖”,可用作储能材料,而且成本可能非常低。 然而,在将热储能材料发射的辐射转换回电能的过程中,可能会有很大的损失。 在本文中,我们特别研究了使用基于量子点 (QD) 的光伏电池和基于钙钛矿的光伏电池的组合的可能性,以高转换效率将储能材料发射的宽波长范围的光子转换为电能。测量了储能材料两种不同温度下的模拟光谱的光伏响应和电功率输出。能量转换源于
1。简介难治产品是可以承受高温(以上1500°C)的材料。它们用于广泛的应用中,包括用熔炉的衬里进行熔融和加热处理,用于冶金,化学,陶瓷,机器,机器,玻璃工业等。有多种类型的折射率,包括以最终产物,粉末颗粒或糊状的单片折射率形式形成的形状折射率,这些形式是在施工现场形成的。此外,难治性产品可以具有不同的化学性质。例如,主要由Sio 2和Zro 2等酸性氧化物组成的酸性折射率,主要由MGO和CAO等基本氧化物以及中性折射率组成。根据其预期用途选择耐火材料的类型。为了最大程度地提高此类折磨的性能,必须精确控制其元素组成以满足特定应用的需求(1)。可以根据日本工业标准(JIS R 2216)(2)和ISO 12677(2011)(3)规定的标准化方法对折射率进行分析,该方法利用X射线流量(XRF)光谱法,这被称为快速和准确的定量分析方法,用于元素分析(2)。为了获得准确的分析结果,通过融合珠方法制备样品,以消除晶粒尺寸和矿物学效应。本文使用用于石英岩难治产品的应用程序包(酸性难治性)描述了一个分析示例。为了满足客户需求,Rigaku是第一家发布定量应用程序软件包的公司,包括用于折磨。这些应用程序包在没有任何专业的技术技能的情况下轻松,准确地进行定量分析的能力而受到了良好的接待。石英岩折射率对于重复的加热和冷却周期有效,因为它们的体积较小,高于600°C。此外,由于其出色的热能性能,它们被广泛用作可乐烤箱,热炉和玻璃融化室的建筑炉。有必要添加4至5质量的Al 2 O 3或Fe 2 O 3等。是对石英岩折射率的烧结辅助。但是,当在玻璃中使用
用于气体和蒸气分离膜的气体分离的膜是一项良好的,节能和不断发展的技术。使用多硫酮的空心纤维膜(带有商业名称Prism)用于H 2恢复的天然气分离技术首先是由Preaea Inc.(现在是Air Products的子公司)(Lonsdale,1982; Air Products Advanced Pri)引入并于1979年成功进行了商业化。从那时起,气体分离膜市场一直在迅速增长,并有望随着技术的进步而进一步增长。在过去的几十年中,多种聚合物膜(例如多硫酮,聚酰亚胺,乙酸纤维素)和聚(二甲基硅氧烷)硅橡胶已用于气体或蒸气分离(Galizia等,2017)。特定的应用包括1)从氮,甲烷等中回收氢。; 2)氧气产生氮; 3)天然气产生甲烷; 4)从氮气中恢复(例如Olefins的蒸气); 5)去除挥发性有机化合物(VOC); 6)空气和天然气脱水; 7)olefin/paraffin(例如乙烯/乙烷,丙烯/丙烷)分离; 8)烃(甲烷,乙烷,丙烷等)分离; 9)二氧化碳捕获来自频道气体(主要是氮)。这些应用已受到显着关注,并解释了大多数基于膜的天然气分离行业。分离技术和材料设计的进步将有助于膜领域的生长和发展。微孔无机膜可以有效地用于催化反应器和煤气燃料等应用中。基于致密的陶瓷膜,致密的金属膜和微孔膜的无机膜也进行了广泛的研究(Lin,2019)。通常用于制造微孔无机膜的材料包括氧化铝(Al 2 O 3),二氧化硅(SIO 2),氧化氧化氧化氧化膜(ZRO 2),沸石和碳。最近,由于有机和无机材料的协同作用,由于有机和无机材料的协同效应,多孔无机填充剂分散在密集的聚合物基质中。各种多孔无机纳米材料,例如氧化石墨烯(GO)和金属有机框架(MOF)已被用作MMMS中的填充剂,从而提高了渗透和分离特性(Qiao等人,2020年)。
ID N . 11300 – 个人研究工程师(意大利语:T ECNOLOGO)– 三级 2012 年 12 月/至今 国家研究委员会 (CNR) - 微电子与微系统研究所 (IMM),Agrate Brianza Unit,Via Olivetti 2, 20864, Agrate Brianza (MB),意大利 公共机构常设研究工程师(意大利语:Tecnologo)。技术领域:支持研究。主题:科学仪器和流程管理。 (Bando n. 364/114,Prot. AMMCNT CNR n.79896 28/12/2012;Prot. AMMCNT CNR n.8704 13/02/2013;Prot. IMM CNR n.769 31/01/2013)主要研究课题:I – 2D 材料(过渡金属二硫属化物,TMD)的各向异性工程:通过化学方法生长并主要通过 X 射线光电子能谱和拉曼光谱进行表征;目标应用在纳米电子学、光子学、光电子学、催化领域。 II – 通过 X 射线散射、X 射线光发射光谱和离子束技术(XRR、XRD、XPS、ToF-SIMS)对薄膜和多层膜的结构和化学物理特性进行表征,以便将其集成为双极 CMOS-DMOS(BCD)技术平台中的大电容器。III – (1)具有垂直磁各向异性的铁磁材料(PMA)和(2)非磁性材料,用于作为磁性结和自旋注入/过滤器中的隧道屏障;(3)稀磁氧化物(DMO)。研究结构和化学性质与磁性和磁输运性质之间的相关性。通过 X 射线散射(包括同步光)、X 射线光发射和离子束技术(XRR、XRD、XPS、ToF-SIMS、XRMS)对薄膜和多层膜的结构和化学物理进行表征,例如:(1)铁磁材料(Co、Fe、CoFe、CoFeB、Co/Ni); (2) 非磁性材料(即 MgO、AlO x );(3) 稀磁氧化物(Fe、Ni 掺杂的 ZrO 2 )。IV – 通过 X 射线散射、X 射线光发射和离子束技术(XRR、XRD、XPS、ToF-SIMS)研究高介电常数电介质或相变合金的 CMOS 兼容性在工艺集成中的热稳定性,以用于新兴的非挥发性存储器(TANOS、RRAM、PCM、MRAM)。V – 通过 X 射线散射(主要是 XRD)对先进 MEMS 设备中集成的压电材料进行表征。
电场和磁场为无机材料的合成、加工和微观结构调整提供了额外的自由度。[1] 与传统烧结技术相比,电流辅助烧结 (ECAS) 技术因显着增强和加速了烧结动力学而具有极好的前景,在先进材料的加工中非常有前景。[2 – 7] 从 100 多年前的第一项专利开始,如今专利和文献中描述了 50 多种不同 ECAS 技术原理。[3] 通常,可通过以下方式实现高加热速率和低停留时间的短期烧结:1) 在导电工具中间接加热非导电粉末,通过焦耳效应加热并将热量传导给粉末; 2) 通过感应或热辐射间接加热非导电粉末,直至达到起始温度,此时电流开始流过样品,因此可以直接加热;3) 通过焦耳效应直接将能量耗散在样品内,直接加热导电粉末;4) 通过样品突然释放存储在电容器中的能量,超快速直接加热导电粉末。粉末和工具材料的电导率主要决定样品是直接加热还是间接加热。金属、合金和特殊陶瓷材料,如 TiC、TiN、Ti(C,N)、MAX 相(M = 过渡金属,A = A 组元素,X = C 或 N)、WC、TiB2 和 ZrB2,作为超高温陶瓷 (UHTC),可以在场辅助烧结技术/放电等离子烧结 (FAST/SPS) 模式下直接加热,因为它们的电导率比通常用作工具材料的石墨的电导率高几个数量级。反之亦然,大多数氧化物(Al2O3、ZrO2、YSZ、MgO、CeO2、掺杂钆的二氧化铈 [GDC] 等)和其他陶瓷,如 BN、Si3N4、SiC 和 B4C,由于其低电导率,则间接加热。通过施加单轴压力可以进一步提高 ECAS 技术的效率,这还可以支持烧结动力学,从而能够降低烧结温度
电极| SE接口。3–5其中一些问题与SE在电极材料方面的电化学稳定性以及SE分解的相互作用的形成有关。如果可以形成稳定的固体电解质相(SEI),例如在常规锂离子细胞中石墨和优化的液体电解质之间的界面,这种初始不稳定不一定是一个问题。6 SE对碱金属的分解会导致形成其电子性能将决定其增长的相互作用的形成:7(a),如果大多数分解产物在电子上是电子上绝缘的,那么SEI的增长将最终停止,并且对电源的电源不可能(如果能够远离电源),则可能会影响电源的电源,如果它可能会影响电源,则该电源可能会造成电源的影响,如果是by的电源,则可以在电源范围内构成,而该障碍物是可以在电源上造成的,如果是by sei的范围,则可以在电源上造成,而该障碍物是可以在电源上造成的。混合离子电子传导(MIEC)之间的生长将不间断,直到消耗所有SE并发生短路。后一种相间类型对于具有持久性能的SSB不兼容。可以访问相间的化学组成对于确定产生哪种类型的相间以及是否在细胞中达到稳定性至关重要。X射线光电子光谱(XPS)是用于化学组成分析的出色表面表征技术。分析埋入界面的组成是一个挑战,因为XPS的深度分辨率有限。最近,已经开发了各种原地8-10和Operando技术11,12来解决此问题。XPS的深度分辨率有限,是由于测量的性质归因于收集光电子的收集,这些光电子在距离最初与原子核相距不远后从样品表面逸出,它们最初与它们最初界定的原子核(通常在10 nm内,在小于10 nm的范围内,用于由Alkα源激发的光电子,并经过Na的金属)。对于所有这些,其想法是使SE表面上的碱金属层足够薄,以使SE发射的光电子(可能是由于相互重点)穿过金属叠加层。为了产生碱金属层,一种技术包括将其从由相同的碱金属组成的计数器电极上镀在SE表面上,同时分析了相间产物Operando。11在这种情况下,可以从任何XPS仪器中存在的电子洪水枪向SE表面提供低能电子。尽管该技术已经证明了其表征相互作用组成的功效,但可以从中提取的信息程度(例如碱金属层的增长率行为)尚未得到充分理解。这项研究的目的是介绍可以从该操作方案中提取的信息深度。结果分为两种成对的文章(第一部分:实验;第二部分:理论13)。在第1部分中,研究了NASICON家族的SE表面上Na金属(Na 0)的电化学稳定性(Na 3.4 Zr 2 Si 2.4 P 0.6 O 12,进一步称为NZSP)。总的来说,这项工作介绍了一个了解增长的框架nzsp是因为其高离子电导率使其成为有前途的候选SE,14,但其对NA 0的稳定性仍在争论中。理论DFT计算预测Na 3 Zr 2 Si 2 PO 12(由Na 1 + X Zr 2 Si X Zr 2 Si X P 3-X O 12,0≤x≤3定义的NASICON组成空间的最接近的阶段是0 v在Na/Na +的Na/Na +应不稳定的Na/Na 2 ZROS na 2 ZRO和Na 2 ZRO 3,4 sRO 3,4 sRO 3,4 s sRO 3,4 s sRO 3)。15–17在Na 0 | Na 3 Zr 2 Si 2 PO 12也通过电化学阻抗光谱和前XPS研究在实验中提出。17,18本研究将区分两种Na 0 | NZSP接口:第一个是Na 0和抛光的NZSP(NZPS抛光)颗粒之间的接口;第二个是Na 0和As-Sinter的NZSP(NZSP AS)颗粒之间的接口。此比较旨在阐明NZSP表面化学对其对Na 0的稳定性的影响。的确,在我们小组的先前研究中确定了热处理促进在As-Sintered NZSP样品表面上形成薄的Na 3 PO 4层,当NZSP表面抛光时,该层可以去除。14 AS Na 3 PO 4是一个阶段,预测通过DFT计算对Na 0稳定,19该比较的目的是评估Na 3 PO 4作为自我形成的缓冲层的效率。对第一个实验部分的讨论着重于从XPS拟合模型中提取信息,以告知Na 0 | nzsp抛光和Na 0 | Na 0 | Na 3 PO 4 | NZSP接口的相间形成动力学。时间解析的电化学阻抗光谱(EIS)也被用来评估相互作用的离子电阻率。