稻草和生物炭对碳矿化的影响以及稻田中碳循环基因的功能对于土壤养分管理和碳池的转化很重要。这项研究基于针对四种治疗方法的五年实地实验:无肥料施用(CK);仅化肥(NPK);稻草与化学肥料(NPK)结合;和生物炭结合化肥(NPKB)。通过将室内矿化培养与元基因组方法整合在一起,我们分析了来自中国吉州省典型的帕迪土壤中有机碳矿化和碳循环基因的反应,对不同的受精处理。结果表明,各种受精处理可显着提高土壤有机碳的水平,溶解的有机碳酸盐,微生物生物量碳和易于氧化的有机碳的水平。NPK的处理提高了土壤有机碳矿化的速率,而NPKB处理降低了。总体而言,NPK和NPKB处理增加了碳固定基因的相对丰度。NPK处理增加了碳降解基因的相对丰度。NPK的治疗增加了蛋白质细菌的丰度,而NPKB治疗降低了静脉细菌的丰度。生物炭可以减少碳损失并增强土壤碳的封存,而稻草则降低了土壤有机碳的稳定性,从而加速了土壤碳池的转化。未来的研究应涵盖长期影响评估,以全面地了解这些受精处理对土壤碳矿物质的持久影响和碳循环基因的功能。
水质参数会影响致病细菌的丰度。属的气管,弧菌,克雷伯氏菌和分枝杆菌是在废水中鉴定出的代表性途径菌群之一。然而,缺乏有关水质与这些细菌丰度之间相关性的信息,以及它们在现有的废水处理设施(WTF)中的降低率。因此,本研究旨在确定WTF中这些细菌基团的丰度和降低率。从日本和泰国的9个WTF收集了68个样本(34个进水和34个未侵害,处理过的废水样品)。16S rRNA基因扩增子测序分析表明,在所有影响的废水和经过处理的废水样品中,存在气瘤菌,弧菌和分枝杆菌。定量实时聚合酶链反应(QPCR)用于量化气动作,弧菌,克雷伯氏菌肺炎物种复合物(KPSC)和分枝杆菌的丰度。进水废水中空气负体,弧菌,kPSC和分枝杆菌的几何平均值为1.2×10 4 - 2.4×10 5,1.0×10 5 - 4.5×10 6,3.6,3.6×3.6×3.6×10 2 - 4.3.3×10 4,以及6.9×10 4,以及6.9×10 3 - 5.5×10 4 4×10 4 4×10 4×4×10 4 4×10 4 4.分别为0.77–2.57,1.00–3.06,1.35–3.11和-0.67–1.57。本研究提供Spearman's rank correlation coefficients indicated significant positive or nega- tive correlations between the abundances of the potentially pathogenic bacterial groups and Escherichia coli as well as water quality parameters, namely, chemical/biochemical oxygen demand, total nitrogen, nitrate-nitrogen, nitrite-nitrogen, ammonium-nitrogen, suspended solids, volatile悬浮固体和氧化还原潜力。
位于埃及北西奈的 El-Rawda 太阳能盐场是由 Bradawil 泻湖的水蒸发形成的。蒸发导致石膏、岩盐矿物和盐滩的沉淀,随后覆盖泻湖的南部和东部地区。本研究采用散弹枪宏基因组学方法、illumine 平台和生物信息学工具来研究太阳能盐场中嗜盐微生物群落的分类组成和功能多样性。从盐水样本中获得的宏基因组读数与从沉积物样本中获得的读数相比数量更多。值得注意的是,盐水样本的主要特征是古菌丰富,而沉积物样本则以细菌为主。这两个样本的真核生物丰度都相对较低,而病毒只在盐水样本中发现。此外,功能途径的比较分析显示盐水和沉积物样本中存在许多与中心代谢和蛋白质加工相关的重要过程。简而言之,这项研究对了解埃及嗜盐生态系统做出了宝贵贡献,提供了对其微生物多样性和功能过程的深入了解。
摘要虽然已经确定了宿主和微生物生物之间的许多健康 - 益生相互作用,但仍缺乏调节这些相互作用的目标方法。因此,我们在这里确定精确的益生元,专门调节了感兴趣的微生物组成员物种。在第一步中,我们表明,仅由于重叠的PING代谢壁ni,通常不可能通过仅由目标物种捕获的化合物来定义精确益生元。随后,我们使用代谢建模来识别秀丽隐杆线虫秀丽隐杆线虫微生物群落的精确益生元,包括免疫保护靶物质lurida myb11和持续的结肠化结肠剂ochrobactrum vermis vermis myb71。我们通过实验证实了四种精确益生元,L-丝氨酸,L-硫代氨酸,D-甘露醇和γ-氨基丁酸,以特别增加了MyB11的丰度。l-serine,从而导致蠕虫宿主的Myb11丰度增加。总体而言,我们的发现表明,代谢建模是设计精密益生元作为未来微生物组靶向疗法的重要基石的有效工具。
结果:干预后,Ig的空腹血糖(FPG)和总胆固醇(TC)的降低大于CG(P <0.05),而Ig中的糖基化血清蛋白(Gsp)的降低几乎比CG中的糖基化血清蛋白(Gsp)更大(P = 0.066)。Ig中的总蛋白(TP),白蛋白(ALB)和肌酐(CREA)水平显着降低,Ig中的降低比干预后的CG(P <0.05)大。干预后Ig中Ig中的ACE和CHAO1指数略高于基础线(分别为p = 0.056和0.052)。在Ig干预后,肌动杆菌,lachnospileceae,二杆菌科和phascalcoltctocterium的丰度显着增加(p <0.05)(p <0.05),并且Ig的丰度高于CG(p <0.05或p <0.05或p <0.1)。与FPG(p <0.05),梭菌,梭形梭菌和lachnospiraceae的丰富度与GSP(P <0.05)负相关(p <0.05),并且与两者呈阳性相关(p <0.05)。在干预过程中未观察到不良事件。
f i g u r e 4由MS-Dial中MS片段化模式识别的不同脂质的相对丰度的热图。对治疗和脂质进行了无监督的聚类。紫色表明丰度降低,黑色表示脂质丰度增加。颜色代码代表右列中的脂质类,右侧列出了脂质缩写。饮食治疗组用顶部的颜色代码表示,现场实验的一周用数字表示。用广义线性混合效应模型(每周每周n = 3 - 6个样品)确定估计值。
微生物群是人类和动物有机体细菌的主要储层。它是众多共生物种的家园,其中一些物种可能是感染的来源,例如金黄色葡萄球菌[1]。虽然越来越了解微生物群的组成和特性,但由于种类繁多的物种及其相互作用,它们的动态仍然难以建模。广义Lotka Volterra(LV)模型特别有趣,因为它允许模拟大量相互作用的微生物种群。但是,校准该模型需要丰富的数据,而量化微生物群组成的经典元基因组分析仅提供“频率”数据,即目前每个人群的比例。目前,为了解决这个问题,使用了总微生物群丰度的不精确代理[2],或者对系统进行了强有力的假设,例如,假设总丰度是固定的[3]。在不使用此类假设的情况下将此模型应用于微生物群数据是一个关键挑战: - 我们在频率数据上以分析表征LV模型的可识别性条件。- 我们在分析上证明了这种可识别性在一般情况下是可能的,而无需强大的假设。- 我们通过对微生物动力学的仿真分析来验证这一结果。
上下文。天王星和海王星的气氛以分子氢和氦气为主。在对流层上部(0.1和10 bar之间),甲烷是第三个主分子,它凝结,在CH 4中产生垂直梯度。由于这种凝结物种比H 2重,因此,由于凝结而导致的平均分子量的变化是对流的因素,传统上仅视为受温度的控制。平均分子量的这种变化使干燥和潮湿的对流更加难以启动。观察结果也显示出甲烷丰度的纬度变化,人们可以期望从一个纬度到另一个纬度的不同垂直梯度。目标。在本文中,我们研究了甲烷的这种垂直梯度及其可以采取的不同形状的影响,包括大气方案,尤其是在冰巨头对流层中潮湿对流风暴的形成和抑制。方法。我们开发了一个3D云解析模型,以按要求的规模模拟对流过程。该模型是非静水的,包括与凝结相关的平均分子量变化的效果。结果。使用我们的模拟,我们得出结论,深层大气中干对流的典型速度相当低(以1 m/s的速度),但足以维持向上的甲烷转运,并且在甲烷冷凝水平上的潮湿对流得到了极大的抑制。在冰巨头中,该标准在80 K时产生的临界甲烷丰度为1.2%(大约对应于1条水平)。先前的研究得出了对甲烷蒸气量的分析标准,该标准应在饱和环境中抑制湿对流。我们首先通过数值验证了该分析标准。然后,我们表明这种关键的甲烷丰度控制了对流风暴的抑制和形成,我们得出结论,这些风暴的强度和间歇性应取决于甲烷丰度和饱和度。在CH 4超过深层大气中这种临界丰度的区域(在天王星上的赤道和中纬度和海王星上的所有纬度)中,稳定的层几乎完全充满了甲烷在凝结水平上的饱和。在此层中,潮湿对流被抑制,从而确保稳定性。只有弱潮湿的对流事件才能发生在该层上方,其中甲烷丰度变得低于临界值。抑制潮湿对流可防止强烈干燥并保持较高的相对湿度,从而有利于这些事件的频率。在CH 4在深层大气中保持低于这种临界丰度的区域(可能是在天王星上的杆子上),没有这样的层。更强大的风暴可以形成,但它们也有点稀有。结论。在冰巨头,干对流很弱,潮湿对流受到强烈抑制。但是,当通过干对流和湍流扩散将足够的甲烷向上运输时,零星的潮湿对流风暴就会形成。由于海王星的内部热流和较大的甲烷丰度,这些风暴在海王星上应该比天王星更频繁。我们的结果可以解释冰巨头中观察到的云的零星性,并有助于指导未来的观察结果,以测试这项工作的结论。