半导体是在照明下与光发射二极管(LED)或其他光源产生的人造光合成的精细有机分子合成的。[3-5]无论尺度及其介导的反应如何,从非常一般的角度来看,光催化剂都可以通过光诱导的电子转移(PET)从一种试剂流动到另一种试剂,如图1所示。Assuming that a reaction mixture is composed of an n-type semiconductor that has a potential of the valence band ( E VB , V vs reference electrode (RE)) more positive than the oxidation potential of the electron donor ( E (D • + /D), V vs RE) and a potential of the conduction band ( E CB , V vs RE) more negative than the reduction potential of the electron acceptor ( E (A/A • − ),v vs re),相应PET的驱动力(δg0,eV)可以通过公式表示[6,7]
电子邮件:oleksandrmalyi@gmail.com摘要:传统上,据信,化学计量化合物的形成被认为是增长效应,而不是系统的固有趋势。在这里,使用LA 3 TE 4的示例,我们证明,在N型间隙中,主带边缘和主导带内部的Fermi水平之间具有较大的内部间隙,Fermi-Level不稳定可以发展,从而减少了受体缺陷的形成能量。具体来说,LA 3 TE 4中的LA空位自发形成以产生受体状态,并通过电子孔重组从主导带中取出一小部分自由载体。如此独特的自兴奋剂机制允许稳定具有不同电子特性的一系列范围的远距离LA 3-X TE 4化合物。此外,我们还展示了如何将控制合成条件用作达到目标功能的旋钮,包括可控的金属对绝缘体过渡。
情节扭曲:当RNA证据挑战我们对DNA结果的期望时,Alexandra Richardson,MS; Terra Brannan,博士; Colin Young博士; Marcy Richardson博士; Carrie Horton,MS-CGC; Heather Zimmermann,博士背景:配对的DNA和RNA测试(DGT-RGT)通过检测位于标准的下一代序列(NGS)捕获以外的剪接变体和提供变体分类中的证据范围来提高DNA结果的准确性。DGT-RGT的另一个好处是识别导致意外或非常规剪接事件的变体。在这里,我们提出了一个变异级别的病例系列,该病例序列突出了通过DGT-RGT在一个临床诊断实验室中鉴定出的意外RNA发现。变体呈现:变体1-NF1 C.888+2T> C会影响剪接供体部位内的规范位置,从而根据当前ACMG指南将其分类为病原(LP)。最近的研究表明,+2位置的T> c取代能够在某些基因组环境中产生野生型转录本。DGT-RGT并未确定与该变体相关的明显异常剪接,这与载体中缺乏神经纤维瘤病一致。变体2- BRIP1 c.727a> g(p.i243v)是中期错义变化,在硅剪接站点中,该算法预测了创建强大的de从头供体站点。RNA研究证实了这种新型供体部位的使用,但出乎意料地表明,外显子内的现有隐性受体位点同时被激活,从而有效地在外显子内产生了伪内龙。在计算机剪接算法中预测了新型U2受体位点的创建。变体3&4 NF1 C.5750-184_5750-178 duptttcttc和atm c.3480g> t(p.v1160v)分别是内含子和同义中的中性和同义性中性变化。RNA测试确定了使用远处的隐性受体部位引起的异常转录本。这两个变体都会增加神秘受体上游隐秘的多吡啶氨酸段中的嘧啶含量。多嘧啶界是受体剪接位点识别中的重要组成部分,但据我们所知,尚未据报道隐性多吡啶氨酸裂纹激活作为异常剪接的机制。变体5&6 -BRCA2 [C.6816_6841+1534DEL1560; c.6762delt]和APC c.1042c> t(p.R3248*)预计由于过早终止密码子(PTC)而导致无义介导的衰减(NMD),因此根据ACMG指南将其归类为致病性。然而,RNA测试表明,这些变体引起了框架内的剪接事件,从而去除了PTC,这一发现与载体中相关的基因 - 疾病表型不存在一致。变体7- lztr1 c.2232g> a(p.a744a)是一种高频同义词,位于内含子的下游,它通过毫无常见的U12剪接体剪接。RNA测试表明,新型U2受体位点经常与现有的上游,隐秘的U2供体站点一起使用,但仅在某些个体中。其他具有低级异常剪接的概率对于弱化隐秘的U2供体部位的常见多态性是纯合的。结论:据我们所知,这是影响内含子的U2/U12-身份的单个核苷酸变化的第一个例子,它也例证了转录组中的个体变异性。
我研究了半导体中分离的氢,除了开发新的实验技术以做到这一点。活动/项目包括:“ Beo中的Muonium State的微波研究”,“ GAAS负电荷的Muonium上的光电子化光谱”; “通过光激发哑光自旋光谱探测的ZnSE中的受体氢状态”; “中性和磁磁性muonium作为β-GA2O3中分离氢的类似物”; “研究金红石,解剖酶和布鲁克特二氧化钛的MU/H样状态”; “探测磁性,金属到半导体过渡的金属以及H中H中H的性质”; “研究透明导电氧化物中的氢动力学和稳定性”; “氢杂质在CIGS和CZTS化合物中的作用和行为(下一代太阳能电池材料)”; “描述锡氏合金中H杂质的早期历史”; “开发激发态(MUSES)技术用于半导体的MUON光谱”; “研究MU(类似于H的)国家,包括停止位点,动力学以及碳化硅中的供体和受体水平”;“ GE中的Muonium-Photocarrier相互作用”; GAAS中的“ Muonium-photoionization和Muonium-Photocarrier相互作用”; “旋转北极星候选材料的调查”
最近的研究表明,在有机太阳能电池 (OSC) 中可以实现高效的自由载流子 (FC) 生成,且电压损失很小;然而,支持这一现象的光物理原理仍不清楚。在此,我们研究了最先进的 OSC 中 FC 生成的机制,该 OSC 由 PM6 和 Y6 分别作为电子供体和受体组成,其中最低激发单重态和电荷转移态之间的能量偏移小至 ~0.12 eV。我们使用瞬态吸收光谱来追踪由供体/受体界面产生的电子-空穴对引起的电吸收的时间演变。空穴从 Y6 转移到 PM6 后,我们观察到在皮秒时间尺度上缓慢但有效的空间电荷解离。基于温度依赖性测量,我们发现这种缓慢但有效的 FC 生成是由电荷通过在界面附近产生的能量级联向下能量弛豫驱动的。我们在此为非常热门的 PM6/Y6 混合系统中 FC 生成机制提供直接的实验证据。
在研究各种量子系统时,对各种汉密尔顿量和谱密度的开放量子动力学进行模拟是普遍存在的。在量子计算机上,模拟一个 N 维量子系统只需要 log 2 N 个量子比特,因此与传统方法相比,在量子计算机中进行模拟可以大大降低计算复杂度。最近,提出了一种用于研究光合作用光收集的量子模拟方法 [npj Quantum Inf. 4, 52 (2018)]。在本文中,我们应用该方法模拟各种光合作用系统的开放量子动力学。我们表明,对于 Drude-Lorentz 谱密度,供体和受体团簇内分别具有强耦合的二聚化几何结构表现出显著提高的效率。我们还证明,当供体和受体团簇之间的能隙与谱密度的最优值匹配时,总能量传递可以得到优化。我们还研究了不同类型的浴(例如欧姆、亚欧姆和超欧姆谱密度)的影响。目前的研究表明,所提出的方法对于模拟光合作用系统的精确量子动力学具有普遍性。
基于小型供体型分子,具有电子受体的有机散装异质结太阳能电池,主要是由于其长波长的吸收而显示出记录的效率,从而有效地收获了太阳能光,因此会导致高电流密度。同时,供体和受体材料的HOMO和LUMO水平的相对位置决定了开路电压。在这里,我们将超快的瞬态吸收和瞬态发光技术与专门设计的多元曲线分辨率建模一起详细解决荷载载体的产生和重组动力学。我们证明了仔细调整同型和Lumo水平的重要性,因为它们的位置决定了界面电荷转移(CT)状态的形成和重组率。不足的供体和受体Lumo水平偏移低于〜300 MEV,导致CT状态效率缓慢且效率低下,而HOMO水平低于〜100 MEV的偏移导致CT状态的快速重组,我们将其归因于从供体向受体转移的后部转移。
bi 1 -x ba x feo 3(bbfo,x = 0,0.03,0.1)薄膜是通过脉冲激光沉积在srruo 3-固定srtio 3(001)底物上外上脚部生长的。随着BA含量的增加,BBFO薄膜显示出显着降低的泄漏电流,但抑制了铁电偏振。X射线衍射互惠空间映射和拉曼光谱表明在BBFO薄膜中,从菱形的类似隆隆巴德中的到四方样相的结构进化。光吸收和光电子光谱测量表明,BBFO薄膜中能量带结构的调节。BBFO薄膜带有A位点BA受体掺杂,表现出光切的蓝移膜和工作函数的增加。 已调制了BBFO薄膜的传导和价带的能量位置,而费米水平向下转移到了禁带的中心,但是受体掺杂的BFO薄膜仍显示N型传导。 受体掺杂存在额外的氧气空位应该为传导行为做出贡献。 这项研究提供了一种操纵功能特性的方法,并洞悉BFO薄膜中BA掺杂物理学的洞察力。带有A位点BA受体掺杂,表现出光切的蓝移膜和工作函数的增加。已调制了BBFO薄膜的传导和价带的能量位置,而费米水平向下转移到了禁带的中心,但是受体掺杂的BFO薄膜仍显示N型传导。受体掺杂存在额外的氧气空位应该为传导行为做出贡献。这项研究提供了一种操纵功能特性的方法,并洞悉BFO薄膜中BA掺杂物理学的洞察力。
在相关努力中,[10] 我们扩展了适用于均相 FRET 检测的分子识别元件列表,包括变构转录因子 (aTF),这是一类特定的底物结合蛋白,可在离散蛋白质结构域中结合 DNA 和小分子效应物。在这里,我们描述了使用特征明确的 aTF TetR 进行分子识别的其他新型传感器,使用改变 aTF-DNA 结合亲和力的 aTF 变体来调节传感器灵敏度,并展示了一种带有遗传编码供体荧光团的额外传感器设计。这些额外的传感器展示了我们方法的普遍性,同时详细介绍了一种更容易被各种研究小组采用的传感器设计。变构转录因子是调节蛋白,包含 DNA 结合结构域和效应物结合结构域,能够以高特异性和选择性识别小分子。 [11] 在目标分析物存在的情况下,aTF 对其 DNA 结合序列的亲和力会受到调节,从而促进下游基因表达的阻遏物或去阻遏物调节。[11] aTF 与其同源 DNA 和效应配体之间独特但相互关联的结合提供了一种内在的转导机制,我们将其与 FRET 偶联以进行光学读出。[10] 其他先前描述的基于底物结合蛋白的 FRET 传感器通过染料标记的配体的置换(竞争性测定)或蛋白质的构象变化来实现供体-受体距离的变化。[6,7] 我们的基于 aTF 的 FRET 传感器利用供体标记的 aTF 与其受体标记的同源 DNA 序列的分析物响应性解离来引起供体-受体距离的大幅变化。因此,这些 FRET 传感器无需对配体进行染料标记,因为染料标记会改变配体的结合行为 [12],同时能够通过供体和受体荧光团的完全解离产生显著的信号变化(图 1)。我们之所以选择 TetR 进行这项研究,是因为它是一种特性良好的 aTF,在实验室环境中广泛用于基因调控和诱导蛋白表达。[11] TetR