Petermann, D.、Wichern, G.、Wang, Z.-Q. 和 Le Roux, J.,“鸡尾酒叉问题:真实世界音轨的三重音频分离”,IEEE 国际声学、语音和信号处理会议 (ICASSP),2022 年 4 月,第 526-530 页。
具有多个频率的抽象微型超声传感器阵列是内窥镜光声成像(PAI)系统中的关键组件,可实现高空间分辨率和生物医学应用的大型成像深度。在本文中,我们报告了基于陶瓷薄膜PZT的开发,基于PZT的双重和多频压电微机械超声传感器(PMUT)阵列以及其PAI应用的演示。的长度为3.5毫米或直径10 mm,正方形和环形PMUT阵列,含有多达2520 pm的元素,并且用于内窥镜PAI应用,开发了从1 MHz到8 MHz的多个频率。通过晶片键和化学机械抛光(CMP)技术获得厚度为9μm的薄陶瓷PZT,并用作PMUT阵列的压电层,其压电常数D 31的测量高达140 pm/v。从这个高的压电常数中获得的好处,制造的PMUT阵列表现出高机电耦合系数和较大的振动位移。除了电气,机械和声学表征外,还使用嵌入到琼脂幻像中的铅笔导线进行了PAI实验。通过具有不同频率的PMUT元素成功检测到光声信号,并用于重建单一和融合的光声图像,这清楚地证明了使用双频和多频PMUT阵列的优势,以提供具有高空间分辨率的全面光声图像,并同时使用高空间分辨率和较大的信号和较大的信号比率。
摘要 我们提出了一种外部驱动声学超材料模型,该模型由耦合声波导的非线性平行阵列组成,支持逻辑 phi 位,即量子位 (qubit) 的经典类似物。相关多 phi 位系统的描述强调了在相应的希尔伯特空间中表示 phi 位和多 phi 位矢量状态的重要性。实验数据用于演示单 phi 位 Hadamard 门和相移门的实现。三 phi 位系统还用于说明多 phi 位门以及简单类量子算法的开发。这些演示为基于声学超材料的数字量子模拟计算平台的实现奠定了基础,该平台可以实现类量子门,并可能成为模拟材料的高效平台。
图 2 | 运动任务的 fPACT 和 7 T fMRI 结果。对右侧 FT(a:fMRI,b:左半球无颅骨 fPACT)、左侧 FT(c:fMRI,d:右半球颅骨完整 fPACT)和 TT(e:fMRI — 左图显示大脑左侧,f:左半球无颅骨 fPACT,g:fMRI — 左图显示大脑右侧,h:右半球颅骨完整 fPACT)的功能反应进行了成像。皮质上显示的功能反应(左栏)代表反应的最大振幅投影。功能反应也显示在通过激活的轴向(中间栏)和冠状(右栏)切片上。对于 FT(ad),我们选择相同的轴向和冠状切片显示在所有四张图像中。对于左侧无颅骨侧的 TT(e、f),我们选择彼此相距 5 毫米以内的切片。对于右侧颅骨完整侧的 TT(g、h),我们选择相同的轴向和冠状切片。但这些激活在空间上并不重叠。在每个功能图中,我们显示了以最大 t 值(𝑡𝑚𝑎𝑥)的 70% 为阈值的区域,这些区域列为每个皮质图下方的第一个值。皮质图下方显示了对应于最大 t 值的 70% 的 p 值(一元学生 t 检验)。白色箭头表示 fPACT 中的激活区域。比例尺:2 厘米。
。CC-BY-ND 4.0 国际许可证下可用未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是
光声光谱法测量了通过声学检测对吸收的电磁能,尤其是光的影响。它基于光声效应。当周期性中断的光束入射在材料目标上时,它会产生声波,其周期性及其强度取决于光吸收以及随后材料中的非辐射衰变。这种现象被称为“光声效应”,是亚历山大·格雷厄姆·贝尔(Alexander Graham Bell)在1880年发现的,试图通过阳光束传输声音。贝尔通过安装薄薄的Lampbrack来代替横向线,并通过听力管来代替望远镜,以证明声音是在电磁谱的所有波长中产生的,但是它的响度是光谱强度[1]。
个性化医疗是解决癌症精准诊断和有效治疗挑战的关键技术[1],比单一的诊断或治疗方法更具优势。癌症诊疗在患者分层和个性化医疗以及实时监测纳米药物治疗过程方面显示出巨大潜力,从而提供有关纳米药物治疗效果的反馈。[2]诊疗系统的诊断功能提供有关生物体内肿瘤位置和大小的信息,而治疗功能则侧重于药物的抗肿瘤作用。[3]此外,分子成像是医学成像中最先进的技术,涉及肿瘤诊断、精准药物开发等领域。[4]在各种技术中,光声 (PA) 成像提供厘米级深成像深度,而荧光 (FL) 成像具有具有出色分辨率和灵敏度的优势;因此受到了广泛关注。PA 成像具有低灵敏度,而 FL 成像缺乏空间分辨率;因此,两者各有优缺点,具有互补的优势。
摘要。神经调节在解读神经回路和探索神经系统疾病的临床治疗中发挥着不可估量的作用。光声神经调节是一种新兴的模式,它受益于超声波的高穿透深度以及光子的高空间精度的优点。我们总结了各种用于神经调节的光声平台的最新发展,包括基于光纤、薄膜和纳米传感器的设备,强调了每个平台的主要优势。讨论了光声作为一种可行的神经调节工具的可能机制和主要障碍。提出了基础研究和转化研究的未来方向。© 作者。由 SPIE 根据知识共享署名 4.0 国际许可出版。分发或复制本作品的全部或部分内容需要完全署名原始出版物,包括其 DOI。[DOI:10.1117/1.NPh.9.3.032207]