我们在复杂的自适应系统中探讨了新兴量子样理论的概念,并特别研究了Lotka – Volterra系统中这种新兴(或“模拟”)量子理论的具体示例。通常,我们研究了在经典系统上实施量子力学的数学形式主义的可能性,以及使用这种方法的条件。我们从汉密尔顿– jacobi(HJ)方程的经典系统的标准描述开始,并将其减少到有效的schrodinger-type方程,并具有(模拟)planck常数y,该方程是系统依赖的。的条件是,依赖状态的所谓量子电势𝑉被HJ方程中的一些额外项取消。我们考虑了这个附加术语,以规定正在考虑的经典系统与“环境”的耦合。我们假设经典系统可以通过对环境进行微调来取消(至少大约)(至少大约)。这可能提供了一种机制,可以在(复杂)自适应系统(例如生物系统)中建立稳定的固定状态。特别是我们提出了一个普遍的论点,即为什么经典系统的非平衡动力学会导致模拟量子描述,以确保稳定性与适应性兼容。在这种情况下,我们强调了模拟量子动力学的状态依赖性,我们还介绍了模拟量子,依赖状态,统计领域理论的新概念。通过这种方式,我们将破坏性的概念重新构架为“量子湍流”的概念,即我们还讨论了量子到经典的某些通用特征以及我们建议的流体力学表述的湍流阶段中发现的模拟量子到古典过渡。可以类比,量子和经典之间的过渡可以与从层流到流体动力学的湍流过渡。
使用现实世界数据了解治疗对健康相关结果的影响需要定义因果参数并施加相关识别假设,以将其转化为统计估计。半参数方法,例如目标最大似然估计器(TMLE),以构建这些参数的渐近线性估计器。要进一步建立这些估计量的渐近效率,必须满足两个条件:1)数据可能性的相关组成部分必须属于Donsker类,而2)2)滋扰参数的估计值在其真实值的速度上以比N -1 /4更快的速度收敛。高度适应性的拉索(HAL)通过在具有有界分段变化标准的Càdlàg函数中充当经验风险最小化来满足这些标准,已知是Donsker。hal达到了所需的收敛速度,从而保证了估计量的渐近效率。HAL最小化其风险的功能类别具有足够的灵活性,可以捕获现实的功能,同时保持建立效率的条件。此外,HAL可以对非方向可区分参数(例如条件平均治疗效果(CATE)和因果剂量响应曲线,对精确健康很重要。尽管在机器学习文献中经常考虑这些参数,但这些应用通常缺乏适当的统计推断。HAL通过提供可靠的统计不确定性量化来解决这一差距,这对于健康研究中的知情决策至关重要。
抽象拓扑优化是工程设计中无处不在的任务,涉及预先涂抹的空间域中材料的最佳分布。最近,已经提出了以数据驱动的方法(例如深生AI模型)作为迭代优化方法的替代方法。但是,现有的数据驱动方法通常使用固定的网格分辨率和域形在数据集上进行培训,从而降低了它们对不同分辨率或不同域形的适用性。在本文中,我们引入了两个关键的创新 - 求解器和神经隐式现场体系结构以解决这些局限性。首先,我们引入了一个快速,可行的,迭代的基于GPU,以针对3D未经检测网格的高通量数据集的生成优化。我们的求解器生成了122K优化的3D Topologies,这是最大的公共数据集的数量级。第二,我们引入了一种新的无分辨率数据驱动方法,用于使用称为NITO-3D的神经字段,用于3D拓扑。单个NITO-3D模型训练并预测各种分辨率和宽高比。还可以消除对计算密集型物理场调节的需求,NITO-3D为3D拓扑选项提供了更快,更灵活的替代方案。平均而言,NITO-3D的拓扑结构约为2000倍,仅比最新的迭代求解器高0.3%。有10个步骤的迭代精细调整,NITO-3D的平均速度快15倍,并且产生的拓扑比SIMP的合规性高0.1%。我们在https://github.com/lyleregenwetter/nito-3d上开放与此工作关联的所有数据和代码。
自适应巡航控制 (ACC) 遵循自动驾驶汽车的工业和安全标准,是现代车辆中广泛使用的高级驾驶辅助系统 (ADAS) 功能。ACC 目前可根据驾驶员的期望速度值来控制速度。本研究介绍了一项重大进步:智能自适应巡航控制 (IACC) 功能,同时开发了一种控制系统架构,通过将其集成到自动驾驶汽车中,该架构有望在科学、经济和社会层面做出显著贡献。该设计融合了交通标志和限速识别 (TSLR)、ADAS 功能和全球定位系统 (GPS) 数据等关键元素,主要通过这些支持功能增强驾驶员安全性。主要重点是设计一个可容纳这些新功能以确保安全驾驶的系统架构。IACC 系统架构的创建采用基于模型的系统工程 (MBSE) 的方法。通过这种 MBSE 方法,我们制作了系统级图表,并系统地解决了安全问题。我们设计了几种方案来评估贡献,随后进行了测试和分析。该架构特别强调 IACC 的安全方面。利用 TSLR 功能,系统可以解读交通标志并从外部来源获取限速数据,防止车辆速度超过规定限速。将设定速度值与限速进行比较,确保遵守安全参数。在这种情况下,系统利用 GPS 数据识别前方车辆,增强了在蜿蜒道路上的驾驶员支持。与其他自适应巡航控制概念相比,这种方法显著提高了 IACC 功能的可靠性,尤其是在安全灵敏度方面。
脑机接口 (BCI) 是一种突破性的方法,它使患有严重运动障碍的人能够直接交流,绕过传统的神经和肌肉通路。在各种各样的 BCI 技术中,基于脑电图 (EEG) 的系统因其非侵入性、用户友好操作和成本效益而特别受到青睐。最近的进展促进了自适应双向闭环 BCI 的发展,它可以动态调整用户的大脑活动,从而提高神经康复的响应能力和疗效。这些系统支持实时调制和持续反馈,促进与用户的神经和行为反应相一致的个性化治疗干预。通过结合机器学习算法,这些 BCI 优化了用户交互并通过活动依赖性神经可塑性机制促进恢复结果。本文回顾了基于 EEG 的自适应双向闭环 BCI 的当前前景,研究了它们在运动和感觉功能恢复中的应用,以及实际实施中遇到的挑战。研究结果强调了这些技术在显著提高患者生活质量和社交互动方面的潜力,同时也确定了未来研究的关键领域,旨在提高系统的适应性和性能。随着人工智能的不断进步,复杂的 BCI 系统的发展有望改变神经康复并扩大在各个领域的应用。
衰老通常被视为不可逆转的过程,其与免疫系统的复杂关系引起了人们的关注,因为它对衰老人群的健康和福祉产生了深远的影响。随着年龄的增长,免疫系统内发生了许多改变,影响了先天和适应性免疫。在先天免疫的领域中,衰老带来了各种免疫细胞的数量和功能,包括中性粒细胞,单核细胞和巨噬细胞的变化。另外,某些免疫途径(例如CGAS)被激活。这些改变可能会导致端粒损伤,细胞因子信号的破坏以及对病原体的识别受损。随着年龄的增长,适应性免疫系统也经历了无数的变化。这些包括T细胞和B细胞的数量,频率,亚型和功能的变化。此外,人类肠道微生物群是衰老过程的一部分,经历了动态变化。值得注意的是,免疫变化与肠道菌群之间的相互作用突出了肠道在调节免疫反应和维持免疫稳态的作用。百岁老人的肠道菌群具有类似于年轻人发现的特征,将其与典型的老年人观察到的微生物群区分开来。本综述深入研究了对衰老如何影响免疫系统的当前理解,并提出了通过干预免疫因素逆转衰老的潜在策略。
自适应途径计划是一种随着时间的推移绘制解决方案空间的方法,以告知不确定性下的决策。自10S中首次适应气候变化适应以来,几项研究和实际应用已使用并扩展了该方法,并讨论了其益处,限制和复杂性。我们从十年的自适应途径研究中学到了什么?本文详细阐述了有关自适应途径的使用,价值和弱点的经验教训,该方法是使用与决策背景,所使用的方法以及对决策做出的一系列指导问题进行决策的方法。根据我们的经验和文献综述,我们发现:a)自适应途径分析已被广泛应用,并且正在从理论到实践; b)自适应途径分析可以量身定制,通常遵循分阶段的方法; c)方法包括叙事,影响模型和利益相关者参与工具; d)由于多个参与者,价值观,危害和行动的各种尺度出于不同目的而导致的自适应途径的复杂性是一个挑战,并且通过各种扩展和与其他副本的组合来越来越多地考虑这一点。可以解决弱点和当前挑战的前进道路包括:在不同尺度上的多个参与者(例如,通过交互式和多级途径)之间的协同进化,并将自适应途径分析与视觉和背景方法相结合,以进行变革性适应和操作气候及格的发展途径。要在实践中实现进一步的申请,重要的是要共享经验和治理问题(例如长期计划和资金)已解决。
我们报告了两个无关的成年人,具有纯合(P1)或复合杂合(P2)私人损失 - v -rel reticuloenculoisois病毒性癌基因癌基因同源物B(relb)的功能变异。功能性RERB的缺乏会损害患者成纤维细胞中淋巴细胞毒素的NFKB2 mRNA和NF -κB2(P100/p52)蛋白的诱导。这些缺陷是通过用野生 - 型RELB互补DNA(cDNA)转导的。相比之下,RELB缺乏成纤维细胞对肿瘤坏死因子(TNF)或IL -1β通过规范NF -κB途径的反应仍然完好无损。p1和p2具有较低的幼稚CD4 +和CD8 + T细胞以及记忆B细胞的比例较低。此外,其幼稚的B细胞无法区分为免疫球蛋白G(IgG)或免疫球蛋白A(IgA) - 响应CD40L/IL -21的分泌细胞,以及IL -17A/F的发育 - 产生T细胞在体外受到严重损害。最后,即使在造血干细胞移植后,患者即使在造血干细胞移植后也会产生中和自身抗体(IFNS),这证明了T细胞选择中胸上皮细胞的持久功能障碍,并对某些自身抗原的中心耐受性。因此,遗传的人类RERB缺乏破坏了替代NF -κB途径,其基础A的基础A和B细胞免疫缺陷与I型IFN的中和自动抗体一起赋予了对病毒,细菌和真菌感染的倾向。
使用CRISPR/CAS9技术对种系的遗传编辑使改变牲畜特征成为可能,包括产生对病毒疾病的抗性。但是,病毒适应能力可能会在这项工作中带来主要障碍。最近,通过使用CRISPR/CAS9基因组编辑在ALV-J受体NHE1中删除单个氨基酸W38来开发对抗禽类病毒亚组J(ALV-J)抗性的鸡。这种耐药性在体外和体内都得到了巩固。在所有测试的ALV-J菌株中,W38 - / - 鸡肉胚胎成纤维细胞的体外耐药性已显示。 为了研究ALV-J进一步适应的能力,我们使用了基于逆转录病毒的测定法来选择适应的ALV-J变体。 我们假设在包膜蛋白质蛋白内会发生克服细胞抗性的自适应突变。 根据这个假设,我们分离了和测序的数量适应性病毒变体,并在其包膜基因中发现了八个独立的单核苷酸取代。 确认这些替代的适应能力,我们将其引入原始逆转录病毒记者。 在W38 - / - 胚胎胚胎成纤维细胞中有效复制的所有八种变体在体外,w38 - / - 鸡对肿瘤诱导的两个变体都敏感。 重要的是,具有更广泛修饰的受体等位基因对病毒保持抗性。 我们得出的结论是,需要更复杂的编辑来获得稳健的抵抗力。在所有测试的ALV-J菌株中,W38 - / - 鸡肉胚胎成纤维细胞的体外耐药性已显示。为了研究ALV-J进一步适应的能力,我们使用了基于逆转录病毒的测定法来选择适应的ALV-J变体。我们假设在包膜蛋白质蛋白内会发生克服细胞抗性的自适应突变。根据这个假设,我们分离了和测序的数量适应性病毒变体,并在其包膜基因中发现了八个独立的单核苷酸取代。确认这些替代的适应能力,我们将其引入原始逆转录病毒记者。在W38 - / - 胚胎胚胎成纤维细胞中有效复制的所有八种变体在体外,w38 - / - 鸡对肿瘤诱导的两个变体都敏感。重要的是,具有更广泛修饰的受体等位基因对病毒保持抗性。我们得出的结论是,需要更复杂的编辑来获得稳健的抵抗力。这些结果证明了牲畜基因组工程对抗病毒抗性的重要策略,并说明通过适应性病毒变体可以克服次要受体修饰引起的抗性抗性。
使用 CRISPR/Cas9 技术对生殖系进行基因编辑,可以改变牲畜性状,包括产生对病毒性疾病的抗性。然而,病毒的适应性可能是这一努力的主要障碍。最近,通过使用 CRISPR/Cas9 基因组编辑删除 ALV-J 受体 NHE1 中的单个氨基酸 W38,开发出了对禽白血病病毒亚群 J (ALV-J) 具有抗性的鸡。这种抗性在体外和体内均得到了证实。体外显示 W38 -/- 鸡胚胎成纤维细胞对所有测试的 ALV-J 菌株具有抗性。为了研究 ALV-J 进一步适应的能力,我们使用了基于逆转录病毒报告基因的检测来选择适应的 ALV-J 变体。我们假设克服细胞抗性的适应性突变会发生在包膜蛋白中。根据这一假设,我们分离并测序了大量适应的病毒变体,并在它们的包膜基因中发现了八个独立的单核苷酸替换。为了确认这些替换的适应能力,我们将它们引入原始的逆转录病毒报告基因中。所有八个变体在体外都能在 W38 -/- 鸡胚胎成纤维细胞中有效复制,而在体内,W38 -/- 鸡对其中两个变体诱导的肿瘤敏感。重要的是,具有更广泛修改的受体等位基因仍然对病毒具有抵抗力。这些结果证明了牲畜基因组工程中实现抗病毒抗性的重要策略,并说明由较小受体修改引起的细胞抗性可以通过适应的病毒变体来克服。我们得出结论,需要更复杂的编辑才能获得强大的抵抗力。
