尽管维持心脏功能的β1-肾上腺素受体(β1 -ar)信号转导,但在失败的心脏中被下调,但心力衰竭缺陷的机械性尚未完全理解。由于心脏肥大总是与心力衰竭相关,因此由于肥大过程而导致心脏失败的β1 -AR机制的丧失。在这方面,我们在诱导压力超负荷以及诱导体积过载后4和24周的4和24周后4和24周回顾了从大鼠模型的自适应心脏肥大和不良适应性肥大的信息。在这些肥大性条件下据报道,β1 -AR密度的变化以及异丙肾上腺素诱导的心脏功能的增加,心肌细胞的细胞内Ca 2+浓度和腺苷酸化酶活性在这些肥大性情况下已有报道。在压力或体积超负荷4周时自适应肥大显示出β1 -AR信号的不同成分活性的不变或增强增加。另一方面,由于压力超负荷和由于体积超负荷而导致的不良适应性肥大,发现β1 -AR信号转导途径的活性下降了抑郁症。这些观察结果提供了证据,表明在适应性心脏肥大中未改变或上调β1 -AR信号系统,并且在适应不良的心脏肥大或心力衰竭中被下调。建议,涉及自主性不平衡的复杂机制对于确定非失败和失败心脏的差异变化至关重要。此外,本文提供的信息支持以下概念:心力衰竭或不良心脏肥大的β1 -ar机制下调不是由于肥大过程本身。
抽象的微生物物种能够与健康个体共存,例如共生真菌白色念珠菌,利用多种策略来逃避我们的免疫防御能力。这些策略包括在其细胞表面掩盖与病原体相关的分子模式(PAMP)的掩盖。我们先前报道说,白色念珠菌会积极降低促炎性PAMPβ-1,3-葡聚糖在其细胞表面的暴露,以响应于与宿主相关的信号(如乳酸和缺氧)。在这里,我们表明白色念珠菌的临床分离株相对于其乳酸和低氧诱导的β-1,3-葡聚糖掩盖了表型变异性。我们利用了这种可变性来识别反应性和无反应性临床分离株。然后,我们对这些分离株进行了RNA测序,以揭示其表达模式表明与乳酸或缺氧诱导的β-1,3-葡聚糖掩模的潜在相关的基因。两个这样的基因的缺失减弱了掩盖:PHO84和NCE103。我们进一步检查了NCE103相关的信号传导,因为先前已显示NCE103编码碳酸酐酶,该碳酸酐酶在低CO 2水平上促进了腺苷酸环酶蛋白激酶A(PKA)信号传导。我们表明,尽管CO 2不会触发白色念珠菌中的β-1,3-葡聚糖掩盖,但SCH9-RCA1-NCE103信号传导模块强烈影响β-1,3-葡聚糖暴露于低氧和乳酸。除了确定控制白色念珠菌中PAMP暴露的新调节模块外,我们的数据还暗示,该模块对于响应于CO 2以外的环境输入的PKA信号很重要。
相关性溶血磷脂酸 (LPA) 受体 (PubMed:9070858, PubMed:19306925, PubMed:25025571, PubMed:26091040)。在肌动蛋白细胞骨架重组、细胞迁移、分化和增殖中发挥作用,从而有助于对组织损伤和感染因子的反应。通过异源 G 蛋白的 G(i)/G(o)、G(12)/G(13) 和 G(q) 家族激活下游信号级联。信号抑制腺苷酸环化酶活性并降低细胞 cAMP 水平 (PubMed:26091040)。信号传导触发细胞质 Ca(2+) 水平的增加 (PubMed:19656035, PubMed:19733258, PubMed:26091040)。激活 RALA;这导致磷脂酶 C (PLC) 的激活和肌醇 1,4,5-三磷酸的形成 (PubMed:19306925)。信号传导介导下游 MAP 激酶的激活 (通过相似性)。有助于调节细胞形状。促进神经元细胞中肌动蛋白细胞骨架的 Rho 依赖性重组和神经突回缩 (PubMed:26091040)。促进 Rho 的激活和肌动蛋白应力纤维的形成 (PubMed:26091040)。通过激活 RAC1 促进迁移细胞前缘板状伪足的形成(通过相似性)。通过其作为溶血磷脂酸受体的功能,在趋化性和细胞迁移中发挥作用,包括对损伤和创伤的反应(PubMed:18066075,PubMed:19656035,PubMed:19733258)。通过与 CD14 相互作用,在引发对细菌脂多糖 (LPS) 的炎症反应中发挥作用。促进对溶血磷脂酸的细胞增殖。正常骨骼发育所必需的。可能在成骨细胞分化中发挥作用。正常大脑发育所必需的。成人齿状回中新形成的神经元正常增殖、存活和成熟所必需的。在疼痛感知和神经性疼痛的引发中发挥作用(通过相似性)。