肝细胞癌(HCC)仍然是全球与癌症相关死亡的主要原因。免疫疗法,靶向疗法和联合治疗的最新进展已显着改善许多HCC患者的结局。本评论总结了2024年ASCO年度会议的关键发现,重点是新兴疗法,包括免疫检查点抑制剂(ICIS),CAR-T细胞疗法,溶瘤病毒以及局部区域疗法,例如跨性别化学栓塞(TACE)和肝脏肠胃不接受化学疗法(Hapticalial Infife Infife Chemothy)。ICI,尤其是与其他药物结合在一起时,已经显示出有希望的效率,尽管仍然存在诸如免疫相关的不良事件和抵抗机制之类的挑战。CAR-T细胞疗法和溶瘤病毒为晚期HCC提供了新型的治疗途径,但是它们在实体瘤中的长期效率仍在研究中。局部疗法,尤其是与全身治疗的结合,在管理不可切除的HCC和提高外科切除率的转化率方面继续发挥关键作用。此外,正在探索生物标志物(例如缺氧评分和CTNNB1突变)的潜力,以更好地个性化治疗并预测患者反应。这些生物标志物可以为更有针对性和有效的治疗策略铺平道路。总体而言,最近在ASCO遇到的最新研究重点介绍了HCC治疗的进展,强调了持续创新的重要性。未来的研究应集中于克服抗药性机制,优化组合疗法以及整合生物标志物驱动的方法,以改善患者的结果并增强个性化治疗策略。
摘要简介:人工智能 (AI) 启发了计算机辅助药物发现。机器学习(尤其是深度学习)在多个科学学科中的广泛应用,以及计算硬件和软件的进步等因素继续推动这一发展。对于人工智能在药物发现中的应用,最初的大部分怀疑已经开始消失,从而使药物化学受益。涵盖的领域:回顾了人工智能在化学信息学中的现状。本文讨论的主题包括定量结构-活性/性质关系和基于结构的建模、从头分子设计和化学合成预测。强调了当前深度学习应用的优势和局限性,并展望了用于药物发现的下一代人工智能。专家意见:基于深度学习的方法才刚刚开始解决药物发现中的一些基本问题。某些方法上的进步,例如信息传递模型、空间对称性保持网络、混合从头设计和其他创新的机器学习范式,可能会变得很普遍,并有助于解决一些最具挑战性的问题。开放数据共享和模型开发将在利用人工智能推动药物发现方面发挥核心作用。
不同的生物多样性维度越来越受到赞赏,这对于维持生态系统及其对人类的服务至关重要。最近,随着功能生物地理学的出现,功能多样性特别感兴趣,因为它与碳,水和能源交换以及气候缓解等生态系统过程的密切联系。多种多样性在空间和时间上有所不同。了解这种范围的这种变化对于跟踪地球生态系统的弹性很重要,并且有关生态系统结构特征的信息为监测提供了必要的基础,预测生态系统功能模式和生态系统的过程,以整体方式从单个单位到整体。最近,关于生物多样性监测和测量的高分辨率,高通量,非侵入性和大规模数据正在成为提高生态发现中效率和相干性的新趋势。遥感被证明是解决这一研究差距的关键技术。在不同级别的空气和卫星传播光谱仪可以在各种生态系统以及各种社区和分类单元中开发新颖的多样性测量和替代方案。在本研究主题中,我们的目标是将最新的研究汇总到一个快速增长的方向上,该研究结合了遥感技术及其在生物多样性和生态系统功能(BEF)中的应用。我们想知道,从物种到生态系统的不同水平的生态理论如何通过多尺度的数字化观察和计算方法的进步来比以往任何时候都更加连接。从本研究主题的11篇发表论文中可以看出,我们概括了该领域的三个主要方向:(1)生物多样性的新型观察技术及其应用,(2)用地球信息学方法宏观的生态系统功能评估,以及
大肠癌微环境中的先天免疫细胞主要包括巨噬细胞,中性粒细胞,天然杀伤细胞,树突状细胞和骨髓衍生的抑制细胞。通过分泌多种细胞因子,趋化因子和其他控制这些过程的因素,它们在肿瘤开始和进展中起关键作用。结直肠癌是胃肠道的常见恶性肿瘤,了解先天免疫细胞在CRC微环境中的作用可能有助于改善CRC的治疗方法并增加良好的预后。在这篇综述中,我们全面探讨了先天免疫细胞在结直肠癌(CRC)的启动和进展中的关键作用,以及对当前先天免疫细胞免疫治疗的当前景观的广泛评估,从而为未来的研究策略和临床试验提供了有价值的见解。
脓毒症的特征是免疫细胞对感染同时产生早期促炎反应和相反的抗炎反应,后者会导致长期免疫抑制。脓毒症的主要病理事件是先天和适应性免疫细胞的广泛程序性细胞死亡或细胞自我牺牲,导致严重的免疫抑制。这种严重的免疫功能障碍会妨碍有效的原发性病原体清除,从而增加继发性机会性感染、潜伏性病毒再激活、多器官功能障碍和死亡率升高的风险。细胞死亡的类型包括细胞凋亡(I 型程序性细胞死亡)、自噬(II 型程序性细胞死亡)、NETosis(形成中性粒细胞胞外陷阱 (NET) 的程序)和其他程序性细胞死亡,如细胞焦亡、铁死亡、坏死性凋亡,每种细胞死亡在脓毒症后期都以不同的方式导致免疫抑制。淋巴细胞(如 CD4 +、CD8+ T 细胞和 B 细胞)的广泛凋亡与免疫抑制密切相关。树突状细胞凋亡进一步损害 T 细胞和 B 细胞的存活,并可诱导 T 细胞无能或促进调节性 Treg 细胞增殖。此外,延迟凋亡和中性粒细胞功能受损会导致脓毒症中的院内感染和免疫功能障碍。有趣的是,异常的 NETosis 和随后成熟中性粒细胞的耗竭也会引发免疫抑制,中性粒细胞焦亡可以正向调节 NETosis。程序性细胞死亡 1 (PD-1) 或程序性细胞死亡 1 配体 (PD-L1) 之间的相互作用在脓毒症中的 T 细胞调节和中性粒细胞凋亡中起关键作用。树突状细胞生长因子 Fms 样酪氨酸激酶 (FLTEL) 可增加树突状细胞数量、增强 CD 28 表达、减弱 PD-L1 并提高脓毒症患者的存活率。最近,免疫辅助疗法因其在脓毒症患者中恢复宿主生理免疫和体内平衡的潜力而受到关注。本综述重点介绍了几种潜在的免疫治疗剂,旨在增强脓毒症管理中被抑制的先天性和适应性免疫反应。
森林生态系统是世界上最大的碳汇之一,在陆地生物多样性和碳封存中发挥着关键作用。树木是重要的可持续资源,是农艺和经济特性的丰富来源,可提供木材、纸浆和纸张、纤维相关产品、能源和化学产品。在过去的几十年里,常规杂交育种有助于产生具有改良农艺和经济特性的植物品种。然而,林业中的常规杂交育种耗时长,已达到瓶颈。因此,需要注意改善树种的生长和农艺及经济重要性状。由于高质量基因组组装和注释工具、基因识别技术和高效基因编辑的发展,生物技术最近在作物育种方面取得了巨大进展。但与作物相比,还需要开展大量工作来组装和注释高质量基因组,鉴定调控农艺和经济重要性状的关键基因,并在表现出高杂合性的树种中进行高效的基因编辑。本前沿研究主题旨在介绍林木基因组学领域的最新基础发现,包括针对与关键农艺和经济重要性状相关的基因和途径的遗传学研究、次生生长调控的分子机制以及生物技术在木本植物遗传改良中的潜在应用。本卷分为以下部分:(1)基因组组装和注释;(2)调节树木生长、维管发育和应激反应的关键基因的功能鉴定;(3)木本植物的遗传转化和基因编辑。
随着全球糖尿病患病率的上升,胰岛素治疗和口服降糖药等传统治疗方法往往无法达到最佳血糖控制,从而导致严重的并发症。最近的研究集中于通过 a 细胞的转分化来补充胰腺 b 细胞,这提供了一种有希望的治疗途径。本综述探讨了 a 细胞到 b 细胞转分化的分子机制,强调了关键转录因子,例如 Dnmt1、Arx、Pdx1、MafA 和 Nkx6.1,并讨论了潜在的临床应用,特别是在以严重 b 细胞功能障碍为特征的 1 型和 2 型糖尿病中。其中还包括转分化效率低、细胞稳定性和安全性问题等挑战。未来的研究方向包括优化分子途径、提高转分化效率和确保 b 细胞身份的长期稳定性。总体而言,将 a 细胞转化为 b 细胞的能力代表了糖尿病治疗的一种变革性策略,为严重 b 细胞丢失的患者提供了更有效和可持续的治疗希望。
尿路感染 (UTI) 是人类最常见的细菌感染之一,尤其影响女性,具有显著的临床和社会经济影响。尽管医学研究取得了进展,但自 Kass 的开创性工作以来,UTI 的诊断标准几乎没有改变,这强调了需要根据新的科学见解重新评估。最近的研究强调了泌尿道 (UT) 内以前被低估的微生物群落——泌尿道 (UT) 内微生物群落的重要性及其在维持泌尿生殖系统健康中的作用。肠膀胱轴已成为理解 UTI 作为一种菌群失衡的关键途径,其中微生物群落的不平衡及其与宿主的关系会导致感染易感性。本综述探讨了 UTI 的不断发展的定义和诊断挑战,特别是在女性中,并研究了最近对泌尿道生物群和肠膀胱轴的发现的影响。此外,我们讨论了恢复微生物平衡的新治疗策略的潜力,为治疗尿路感染提供了一条有希望的途径。
植物雄性不育 (MS) 是指植物无法产生功能性花药、花粉或雄配子。开发 MS 系是植物育种计划中最重要的挑战之一,因为建立 MS 系是 F1 杂交生产的主要目标。出于这些原因,已在几种具有经济价值的物种中开发了 MS 系,特别是在园艺作物和观赏植物中。多年来,MS 已通过许多不同的技术实现,从基于交叉介导的传统育种方法的方法到基于遗传学和基因组学知识的先进设备,再到基于基因组编辑 (GE) 的最先进分子技术。GE 方法,特别是由 CRISPR/Cas 相关工具介导的基因敲除,已经产生了灵活而成功的战略思想,用于改变关键基因的功能,调节包括 MS 在内的许多生物过程。这些精准育种技术耗时较少,可通过积累有利等位基因加速新遗传变异的产生,能够显著改变生物过程,从而提高品种开发绕过有性杂交的潜在效率。本文的主要目的是概述植物雄性不育方面的见解和进展,重点介绍最近通过靶向特定核基因座诱导 MS 的新型育种 GE 应用。本文总结了近期 CRISPR 技术的潜在机制和主要作物和观赏植物的相对成功应用。本文将讨论 CRISPR/Cas 系统在 MS 突变体生产中的未来挑战和新潜在应用以及其他潜在机会,例如通过瞬时转化系统生成 CRISPR 编辑的无 DNA 和跨代基因编辑以引入所需等位基因和精准育种策略。
纽约 - 食道癌1(NY-ESO-1)属于癌症抗原(CTA)家族,并被鉴定为家庭成员中最免疫原性肿瘤抗原(TAA)之一。鉴于其能够触发自发的体液和细胞免疫反应以及受限的表达,NY-ESO-1已成为癌症免疫疗法最有希望的靶标之一。癌症疫苗是癌症免疫疗法的重要元素,它通过主要的组织相容性复合物II(MHC-II)(MHC-II)和CD8 + T细胞通过主要的组织相容性I(MHC-I(MHC-I),通过主要的组织相容性复合物II(MHC-II)提出了TAA蛋白,肽和抗原性表位的外源性来源。这些机制进一步增强了对由细胞毒性T淋巴细胞(CTL)和辅助T细胞介导的TAA的免疫反应。ny-Eso-1的癌症疫苗有近二十年的历史,从2003年进行的第一次临床试验开始。目前针对NY-ESO-1的癌症疫苗具有多种类型,包括基于树突状细胞(DC)疫苗,肽疫苗,蛋白质疫苗,病毒疫苗,细菌疫苗,治疗性全肿瘤疫苗,全肿瘤细胞疫苗,DNA疫苗和MRNA疫苗,并促进了他们所在的效果,并构成了效率,并构成了这些疫苗。在这里,我们总结了针对NY-ESO-1进行固体癌症治疗的癌症疫苗的当前进展,旨在为将来的研究提供观点。
