抽象的紫外线辐射(UVGI)和臭氧消毒是在高风险环境中缓解病原微生物的空气传播的关键方法,尤其是在呼吸道病毒病原体(如SARS-COV-2和Avian Infiean Infuenza inflienza and Avian inf uenza)中的出现。这项研究定量研究了紫外线和臭氧对生物溶质溶质中大肠杆菌生存能力的影响,特别关注大肠杆菌的生存能力如何依赖于生物溶质醇的大小,这是一个关键因素,它是确定人类静止性系统和bioaerosolols进化环境中沉积模式的关键因素。本研究使用了一个受控的小型实验室,在整个暴露时间(2 - 6 s)中,将大肠杆菌悬浮液燃烧并持有不同水平的UVGI和臭氧水平。由于暴露时间从2到6 s增加,并且在使用uvgi和ozone和ozone(65 - 131 ppb)时,发现大肠杆菌的归一化生存力显着降低了。我们还发现,与较大的尺寸(0.5 - 2.5μm)相比,UVGI降低了生物溶质中大肠杆菌的归一化活力(0.25 - 0.5μm)。然而,当组合紫外线和臭氧时,对于较小的粒径,归一化的活力高于较大的粒径。这些发现为有效的UVGI消毒工程方法的发展提供了见解,以控制高风险环境中致病性微生物的传播。通过理解微生物在各种生物质量大小中的生存能力的影响,我们可以优化紫外线和臭氧技术,以降低病原体的空气传播的潜在风险。
摘要:通过灰尘事件对生物溶质的远距离运输会显着影响大气,生物圈和人际的生态和气象网络。生物素不仅会引起严重的公共卫生风险,而且还充当有效的冰核,可在水文周期中诱导云形成和降水。为了建立生物溶质的风险管理对地球系统的影响,必须在不同的环境条件下对生物溶质进行大规模研究。为此,开展了尘埃– bioaerosol(Dubi)现场运动,以调查2016年至2021年东亚39个地点的约950个样品,以调查生物溶质的分布。使用荧光显微镜观测和高通量DNA测序进一步分析了生物溶质溶胶的浓度和社区结构,并将这些因素与PM 10和诸如PM 10和ARISISION的环境因素进行了比较。结果表明,旱地位点的微生物浓度在统计学上高于湿地部位的微生物浓度,而在旱地,微生物与当时的粒子比的比率高于潮湿区域。每微克细胞PM 10的微生物细胞减少,PM 10增加。每个位点的空气颗粒比例随季节的变化差异很大。在旱地中,空气传播细菌的丰富性和多样性明显高于半干旱地区,而社区结构在所有采样地点之间都是稳定的。杜比现场运动提高了我们对东亚尘埃运输途径的生物溶质特征变化的理解,以及在气候变暖趋势下的生物溶质质量变化,支持降低公共卫生风险的努力。
从海洋表面发出的抽象颗粒,例如海盐和海洋生物活性的副产品,形成了大气气溶胶。气溶胶对气候变化很重要,因为它们抵消了温室气体引起的一些历史变暖。气溶胶对人类健康也很重要:它们足够小,可以吸入并导致呼吸道问题和其他疾病。海洋气溶胶是新西兰Aotearoa城市中存在的天然气溶胶的主要来源,作为天然气溶胶背景的一部分,无法管理。在这里,我们回顾了新西兰空气中海洋气溶胶的生产和存在,以及对人类健康和气候变化的影响。因为海洋气溶胶对气候变化(例如海面温度和风)敏感,因此产量可能会受到气候变化的影响。总体而言,在未来气候变化的情况下,海洋气溶胶不太可能成为新西兰城镇和城市城市大气中的较小贡献者。需要对人为气溶胶进行持续评估,以确保满足空气质量目标。
尽管通过空降途径传播的病原体多种多样,但几乎没有关于影响空气中病原体坚韧性的因素的数据。为了更好地理解并控制空中感染,这些因素的知识很重要。在这项研究中,三个代理,s。金黄色葡萄酒,g。硬化性孢子和MS2细菌噬菌体在30%至70%之间被雾化。空气样品以确定试剂的浓度。s。金黄色葡萄球菌的气溶胶中的生存率显着降低,高于60%。它显示了三种药物的最低恢复率,范围从大约70%RH的0.13%到30%RH时的4.39%。g。硬化性孢子的孢子显示出最高的韧性,恢复速率范围从41.85%到61.73%,而RH的影响很小。对于MS2噬菌体,观察到气溶胶中的韧性明显降低,中间RH的回收率约为4.24%,约为50%。这项研究的结果证实了RH对机载微生物的坚韧性的显着影响,具体取决于特定药物。这些数据表明,在不同的环境条件下,微生物在生物溶质中的行为各不相同。
在东部赤道太平洋中观察到的缺乏表面变暖与厄尔尼诺现象的气候模型预测之间的差异 - 就像气候研究界的变暖模式一样。虽然已提出人为气溶胶作为原因,但赤道太平洋的延长冷却趋势似乎与1980年代以来北半球气溶胶排放的降低发生冲突。在这里,使用CESM,我们表明对气溶胶发射变化的快速和缓慢响应的叠加(随后增加的增加)可以维持LaNiña-可以维持比预期的时间更长的时间。在东南太平洋的低云,风,蒸发和海面温度之间,哈德利细胞对气溶胶还原的快速调节触发了关节反馈,导致楔形 - 形状的冷却,延伸到中央exequareatorial Pacific。同时,北部亚热带细胞逐渐增强,导致赤道地下冷却持续数十年。
许多自然发生的微生物(细菌,霉菌,真菌)会导致健康不良。常规和反复接触高浓度的生物溶质可能会导致呼吸道疾病的发展,包括哮喘,炎症和气道刺激,眼睛的刺激和胃肠道疾病。表1下面详细介绍了暴露于暴露的一般健康状况(这些状况并非特定于浪费和回收利用)。在一系列行业(包括废物和回收,尤其是堆肥)中,与Bioaerosol暴露相关的健康问题众所周知。虽然没有阈值限制以高于事实证明健康影响的阈值限制,但可能存在剂量反应关系,这意味着产生最高暴露的过程更有可能导致健康状况不佳。表1。总结报告了暴露于暴露的健康状况
1 佐治亚南方大学建平许公共卫生学院生物统计学、流行病学与环境健康科学系,美国佐治亚州斯泰茨伯勒 30460;tjthornton65@gmail.com (TT);ca13007@georgiasouthern.edu (CA) 2 伊利诺伊大学香槟分校农业、消费者与环境科学学院食品科学与人类营养系,美国伊利诺伊州厄巴纳 61801;pratik@illinois.edu 3 田纳西大学教育、健康与人文科学学院公共卫生系,美国田纳西州诺克斯维尔 37996;dhiggin6@utk.edu 4 佐治亚南方大学建平许公共卫生学院卫生政策与社区健康系,美国佐治亚州斯泰茨伯勒 30460; ss35449@georgiasouthern.edu * 通讯地址:aadhikari@georgiasouthern.edu;电话:+1-912-478-2289
B'TDAP疫苗的偏差我知道,作为UCLA Health的志愿者,我可能会暴露于气溶胶可传播疾病中,并且可能有可能通过百日咳获得感染的风险。强烈建议所有志愿者进行TDAP疫苗接种。请访问您的初级保健医师以获取TDAP疫苗接种。患有无法从其PCP接种疫苗接种的情况下的个人可以联系志愿服务以寻求进一步的帮助。请在下面指出,如果您已收到TDAP疫苗接种(必须在12岁之后和10年内进行)或选择下降。我拒绝了,因为我选择不接受TDAP疫苗接种。我知道我可能会在以后改变主意。我已经收到了TDAP疫苗接种(12岁以后)。我有记录或知道该疫苗的日期和位置。我已经收到了TDAP疫苗接种。我没有记录或在接种疫苗接种时无法记得。\xef\x82\x9f Other___________________________________________________________________________________'
COVID-19 疫情引发了人们对交叉污染风险的担忧,尤其是在医院环境和重症监护室 (ICU)。感染患者产生的含病毒气溶胶可以在通风房间内传播,使进入房间的医务人员面临风险。使用纹影光学方法发现的实验结果表明,咳嗽和正常呼吸产生的气流会因所用的氧合技术而改变,尤其是在使用高流量鼻导管时,这会增加潜在传染性空气传播颗粒的脱落。本研究还使用基于格子波尔兹曼方法的 3D 计算流体动力学模型来模拟负压下 ICU 病房内的气流以及患者咳嗽产生的大量空气传播颗粒的运动。研究了不同缓解方案对通过通风系统提取的可能含有 SARS-CoV-2 的气溶胶数量的影响。数值结果表明,适当的床位方向和额外的空气处理装置定位可以使提取的颗粒数量增加 40%,并使脱落后 45 秒内沉积在表面的颗粒数量减少 25%。这种方法可以为更全面地解决医院污染风险奠定基础,因为该模型可以被视为概念验证,并适用于任何房间配置。
摘要:除具有气溶胶特性外,生物学起源的气溶胶(被称为生物紫色)具有生命系统的气溶胶,可为它们提供一些具有促成功能的活性。从科学到技术,世界各地的可见进步是在19日19日大流行期间和期间在Bioaerosol领域取得的。 在这里,鉴于人类世和一个健康概念,强调和赞赏,包括空气质量,气候和人类健康,包括空气质量,气候和人类健康在内的角色。 特别是,我们认识到在雾化空气污染,过敏性花粉和生物Aerosol参与下,有机生物学在感染和炎症相关的非传染性疾病中的重要性。 未来的跨学科研究着重于空气中微生物的化学和生物学过程,新兴病原体和过敏原的空气传播以及生物溶质溶胶暴露与人类微生物组的发展和变化之间的关联,以阐明生物溶质与地球系统的相互作用。从科学到技术,世界各地的可见进步是在19日19日大流行期间和期间在Bioaerosol领域取得的。在这里,鉴于人类世和一个健康概念,强调和赞赏,包括空气质量,气候和人类健康,包括空气质量,气候和人类健康在内的角色。特别是,我们认识到在雾化空气污染,过敏性花粉和生物Aerosol参与下,有机生物学在感染和炎症相关的非传染性疾病中的重要性。未来的跨学科研究着重于空气中微生物的化学和生物学过程,新兴病原体和过敏原的空气传播以及生物溶质溶胶暴露与人类微生物组的发展和变化之间的关联,以阐明生物溶质与地球系统的相互作用。