关键见解•估计欧洲海上风能的潜力在600至1,350吉瓦之间,成本为50至65欧元/兆瓦。•计划为绿色氢计划的电子中有78%来自海上风!•到2030年,海上风的潜力可能占欧盟总电力需求的80%至180%。•较高的技术潜力位于> 20公里处,如果使用海底电缆,则会产生高相关的传输过度成本。
奖项#DE-EE0006536 DOE总资金:$ 1,182,789首席研究员:Adrienne Lavine与K Lovegrove(IT Power Australia),P Kavehpour,R Wirz,Sepulveda,A Sepulveda,H Aryafar,H Aryafar,D Simonetti 3 Simonetti 3
Yinson 的绿色氨浮式生产储存卸货 (FPSO),也称为 Power to Ammonia (P2A) FPSO,灵感来自 Power-to-X 概念。P2A FPSO 是一种浮式生产和加工解决方案,可从 100% 可再生资源中生产绿色氨。生产的液氨将储存在船上,可定期卸载到往返天然气运输船上进行运输,从而实现“氨价值链”。
在 Fritz Haber 的基础研究工作的基础上,Carl Bosch 及其工程团队利用 Alwin Mittasch 及其同事发现的经过改进的铁基催化剂,将氨合成技术发展到了技术可操作性。从那时起,合成反应本身并没有发生根本性的变化。即使在今天,每家工厂的基本配置都与第一家工厂相同。氢氮混合物在 400 – 500 °C 的高温(最初高达 600 °C)下在铁催化剂上发生反应,操作压力高于 100 bar,在除去所形成的氨后,未转化的合成气部分被再循环,并补充新鲜的合成气以补偿转化为氨的氮和氢的量。
CCS Carbon capture and storage CCUS Carbon capture, utilisation and storage COAG Council of Australian Governments CSIRO Commonwealth Scientific and Industrial Research Organisation DBNGP Dampier Bunbury Natural Gas Pipeline DC Direct Current DG Dangerous Goods DNI Direct normal irradiance EP Environmental Protection EPA Environmental Protection Authority EPBC Environment Protection and Biodiversity Conservation EPC Engineering, Procurement and Construction EPCM Engineering, Procurement and建筑管理ERIA ERIA经济研究所在东亚和东亚ESG环境,社会和治理饲料前端工程和设计FP FREMANTLE POR GA GA PORT GA GHI GHI GHI全球水平辐照度GIA通用行业GNIC GEALDTON到Narngulu港口Narngulu港口环境HV高压IEA国际能源局ISO国际标准化组织
4. Zhang Q、Grossmann IE。工业需求侧管理的规划和调度:进展与挑战。替代能源与技术。Cham:Springer;2016:383-414。5. Schäfer P、Westerholt HG、Schweidtmann AM、Ilieva S、Mitsos A。基于模型的能源密集型工艺初级平衡市场竞价策略。Comput Chem Eng。2018;120:4-14。6. Baldea M。将化学工艺用作电网级储能设备。引自:Kopanos GM、Liu P、Georgiadis MC 编。能源系统工程进展。Cham:Springer;2017:247-271。7. Mitsos A、Asprion N、Floudas CA 等。新原料和能源工艺优化面临的挑战。 Comput Chem Eng。2018;113:209-221。8. Appl M. 氨。在:Elvers B,编辑。Ullmann 工业化学百科全书。2000 年。https://onlinelibrary.wiley.com/doi/10.1002/14356007.o02_o11。9. Nørskov J、Chen J、Miranda R、Fitzsimmons T、Stack R。可持续氨合成——探索与发现替代、可持续氨生产工艺相关的科学挑战 [Tech. Rep.]。美国能源部;2016 年。https://www.osti. gov/servlets/purl/1283146。访问日期:2017 年 11 月 20 日。10. Demirhan CD、Tso WW、Powell JB、Pistikopoulos EN。通过工艺合成和全局优化实现可持续氨生产。AIChE J。2018;65(7):e16498。11. Guillet N、Millet P。碱性水电解。引自:Godula-Jopek A 编辑。氢气生产:通过电解。Weinheim:威利在线图书馆;2015:117-163。12. Cheema II、Krewer U。电转氨哈伯-博世工艺设计的操作范围。RSC Adv。2018;8(61):34926-34936。13. Reese M、Marquart C、Malmali M 等人。小规模哈伯工艺的性能。 Ind Eng Chem Res。2016;55(13):3742-3750。14. Millet P. PEM 水电解。引自:Godula-Jopek A 编辑。电解制氢。Weinheim:Wiley Online Library;2015:63-114。15. Petipas F、Fu Q、Brisse A、Bouallou C。固体氧化物电解池的瞬态运行。国际氢能杂志。2013;38(7):2957-2964。16. Mougin J. 高温蒸汽电解制氢。氢能纲要。剑桥:爱思唯尔;2015:225-253。 17. Wang G, Mitsos A, Marquardt W. 氨基能源存储系统的概念设计:系统设计和时不变性能。AIChE J。2017;63(5):1620-1637。18. Chen C, Lovegrove KM, Sepulveda A, Lavine AS。用于氨基太阳能热化学能源存储的氨合成系统的设计和优化。Sol Energy。2018;159:992-1002。19. Allman A, Daoutidis P. 风力发电氨发电的优化调度:关键设计参数的影响。Chem Eng Res Des。2017;131:5-15。 20. Allman A、Palys MJ、Daoutidis P. 基于调度的时变运行系统优化设计:风力发电氨案例研究。AIChE J。2018;65(7):e16434。21. Du Z、Denkenberger D、Pearce JM。太阳能光伏供电的现场氨生产用于氮肥。Sol Energy。2015;122:562-568。22. Allman A、Tiffany D、Kelley S、Daoutidis P。结合传统和可再生能源发电的氨供应链优化框架。AIChE J。2017;63(10):4390-4402。23. Palys MJ、Allman A、Daoutidis P。探索模块化可再生能源供电的氨生产的优势:供应链优化研究。Ind Eng Chem Res。2018;58(15):5898-5908。24. Ghobeity A、Mitsos A。太阳能接收器和储存器的最佳设计和运行。J Sol Energy Eng。2012;134(3):031005。 25. Yuan Z, Chen B, Sin G, Gani R. 基于优化的化工过程同步设计和控制的最新进展. AIChE J. 2012;58(6):1640-1659.
氨开裂已被确定为解锁可持续经济的关键步骤。使用密度函数理论,我们对石墨烯和氮改性石墨烯支撑的过渡金属单原子催化剂(SAC)进行了建模,以研究催化NH 3裂纹过程。结果表明,(I)修饰石墨烯可确保过渡金属原子(M)比C-矩阵强,并且(ii)具有三个锚固硝基元(Mn 3)的结构比MN 4更具反应性。在IRN 3和运行3个SAC模型上,N 2进化决定了总速率,而在RHN 3 -SAC上,它是NH 3脱氢。与扩展金属表面相比,SACS上的温度填充模拟在SAC上显示出变化。批处理反应器被采用,以平衡基本步骤作为温度的函数的序列,从而揭示了整个NH 3裂纹活性。结果表明,IRN 3和RHN 3是NH 3在低至230°C下开裂的强大候选者。
前两个相互联系,并与氢的来源相关。Haber-Bosch工艺需要氢,并且可以来自任何地方,包括绿色氢。作为一种实际问题,经济上获得大量氢的最简单方法是通过SMR,它将碳副产品释放到大气中。这是灰色氢,它用于所有氨过程的大部分。它是与氨相关的碳排放的主要来源,但不是唯一的碳排放。因此,实施正确的自动化和测量仪器技术对于缓解策略至关重要,可以帮助提高能源效率并减少排放。