Yinson 的绿色氨浮式生产储存卸货 (FPSO),也称为 Power to Ammonia (P2A) FPSO,灵感来自 Power-to-X 概念。P2A FPSO 是一种浮式生产和加工解决方案,可从 100% 可再生资源中生产绿色氨。生产的液氨将储存在船上,可定期卸载到往返天然气运输船上进行运输,从而实现“氨价值链”。
1. 简介 氨因其高能量密度和碳中性而被视为未来有前途的绿色能源。然而,最大的挑战仍然是从丰富但间歇性的可再生能源中更有效地生产氨。1 在传统的氨合成中,氨通过冷凝器分离,这是能源密集型的。7 因此,改善氨合成的一个重要方面是在循环之前用固体吸收剂有效地分离氨。最近,已经提出了几种材料作为氨分离的固体介质,其中金属卤化物似乎是最可行的选择,通过协同吸收氨。12 在本文中,研究了块状氯化镁以及负载在多孔载体上的氯化镁的氨容量。
氨氧化古细菌(AOA)是地球上最普遍,最丰富的古细菌之一,在海洋,陆地和地热生态系统中广泛分布。与海洋和土壤系统相比,地下环境中AOA种群的基因组多样性,生物地理学和进化过程被大量研究。在这里,我们报告了一种新颖的AOA订单candidatus(CA.)硝基瘤,形成了嗜热ca的姐妹谱系。硝基层。宏基因组和16S rRNA基因读取映射表明,在各种地下水环境中,硝基瘤AOA大量存在及其在一系列地热,陆地和海洋栖息地的广泛分布。陆生氮气肌瘤AOA显示使用甲酸盐作为还原剂来源并使用硝酸盐作为替代电子受体的遗传能力。硝基瘤AOA似乎通过水平基因转移从其他中间人群中获得了关键的代谢基因和操纵子,包括编码尿素酶,亚硝酸盐还原酶和V-type ATPase的基因。获得的功能赋予的其他代谢多功能性可能已促进其辐射到各种地下,海洋和土壤环境中。我们还提供了证据表明,这四个AOA命令中的每一个都跨越了海洋和陆地栖息地,这表明主要AOA谱系比以前提出的更复杂的进化史。一起,这些发现建立了AOA的可靠系统基因组框架,并为该全球丰富的功能公会的生态学和适应提供了新的见解。
摘要 . 氨由于其无碳特性,是一种很有前途的替代化石燃料的替代品。本研究调查了印度尼西亚灰色、蓝色和绿色氨生产的技术经济和环境方面。在这方面,已经开发了一个基于电子表格的决策支持系统来分析每种氨生产方式的平准成本及其对各种参数的成本敏感性。分析结果显示,灰色氨的平准成本为每吨 297 美元(美元),受天然气价格和碳税的强烈影响。蓝色氨是最稳定的生产选择,平准成本为每吨 390 美元,受天然气价格和碳封存相关费用的影响。另一方面,绿色氨的平准成本在每吨 696 至 1,024 美元之间,主要受电解器的选择、可再生能源的成本以及维护和运营支出的影响。此外,研究还显示,灰氨和蓝氨生产每吨氨分别排放 2.73 吨和 0.28 吨二氧化碳当量,而绿氨的现场碳排放量可以忽略不计。总体而言,这项研究强调了利用地热或水力可再生能源生产绿氨的潜力,这是实现印度尼西亚电力、工业和运输部门脱碳的可行解决方案。研究还提供了旨在克服该国发展绿氨工厂现有障碍的若干政策建议。
© 2022. 本手稿版本根据 CC-BY-NC-ND 4.0 许可证提供 http://creativecommons.org/licenses/by-nc-nd/4.0/
利用我们的全球运营地点,网络和信息资源,我们正在从事多边业务,从产品销售,全球物流和融资到以下各阶段的主要国际基础设施和其他项目的开发:矿物质和金属资源,能源,能源,机械,机械和基础设施,化学和钢铁,铁和钢铁,铁和钢铁,铁和钢铁产品,生物,生物,生物,企业,创业,企业,创业公司。普通股
简而言之,绿氢是利用可再生能源将水分解成氢和氧而产生的。燃烧时只会排放水,但生产氢气的成本可能很高。绿氨由绿氢制成,该过程也由可再生能源提供动力。生产绿氢和绿氨对环境和社会有积极和消极的影响。绿氢(见表 14.1)被视为全球向可持续能源和净零排放经济转型的关键推动因素。开发绿氢作为清洁能源解决方案的势头日益增强。它正在成为一种储存可再生能源的主要选择(其他能源储存选择另见第 13 章),氢基燃料可以长距离运输——从能源资源丰富的地区运输到数千公里外的能源匮乏地区。作为一种液体燃料,以绿色氢为原料的绿氨作为运输媒介具有许多优势。在联合国气候大会 COP26 上,绿色氢能被列为多项减排承诺的一部分,作为重工业脱碳的手段,并可作为长途货运、船运和航空燃料。各国政府和工业界都承认氢能是净零经济的重要支柱 1。联合国旨在降低绿色氢能成本的倡议“绿色氢能弹射器”宣布,其绿色电解槽目标将从 2020 年设定的 25 吉瓦增加近一倍,达到 2027 年的 45 吉瓦。欧盟委员会通过了一系列立法提案,旨在通过促进氢气等可再生和低碳气体的使用来实现欧盟天然气市场的脱碳,并确保所有欧洲公民的能源安全。阿拉伯联合酋长国的新氢能战略旨在到 2030 年占据全球低碳氢能市场的四分之一。最近,日本宣布将从其绿色创新基金中投资 34 亿美元,用于加速绿色氢能的研发和推广。未来 10 年氢气的使用情况 2 。预计到 2040 年,鉴于可再生能源规模扩大、成本降低,以及生产棕色、灰色和蓝色氢气的成本增加,绿色或低碳氢气将具有成本竞争力 3 。来自核能的粉红氢气是未来氢气生产的另一种选择 4 。绿色氨的生产被推广为向净零二氧化碳排放过渡的另一种选择。它在这方面的用途包括:
本文采用两种方法来评估灵活性在绿色氨工厂中的作用:用于工厂设计的线性规划 (LP) 和用于工厂运行的模型预测控制 (MPC)。前一种方法已用于其他绿色氨生产分析,11 – 15 尽管本文提出了一种修改方法来确定存储单元的循环对氨价格的影响程度,并给出了新的灵敏度结果。后一种 MPC 方法在孤岛绿色氨工厂中的应用是新颖的,并且为 LP 提供的结果设置了保护栏。MPC 的目的不是设计专门确定氨工厂运行参数(温度、压力、进料比等)的控制回路;相反,MPC 的目的是作为一种确定氨工厂设定点的算法。换句话说,这里介绍的 MPC 类似于级联控制布置中的主回路,决定电力分配和氨产量。对于这两个模型,天气数据均来自 ERA5,并使用标准涡轮机曲线 13 和 Python 上的 PVLib 模块转换为风能和太阳能数据。16
本文采用了两种方法来评估extibles在绿色氨植物中的作用:植物设计的线性编程(LP),以及用于植物运行的模型预测控制(MPC)。在绿色氨产生的其他分析中已经采用了这种方法,11 - 15,尽管这里提出了一种隔离阳离子,以确定存储单元对氨价格的影响的程度,并提出了新的敏感性结果。后一种MPC方法在其应用于岛的绿色氨植物中是新颖的,并将后卫导轨置于LP的结果。MPC的目的不是设计控制回路,该控制环确定了氨植物的工作参数(温度,压力,进料比等。);相反,MPC的目的是用作确定氨植物设定点的算法。换句话说,此处介绍的MPC类似于级联反控制排列中的主要环,决定了功率分配和氨的产生。对于这两种模型,天气数据均来自ERA5,并使用标准涡轮曲线13和Python上的PVLIB模块转换为风和太阳能数据。16
© 本手稿版本根据 CC-BY-NC-ND 4.0 许可证提供 https://creativecommons.org/licenses/by-nc-nd/4.0/