摘要:基于纳米载体的药物输送系统的开发是药理学,有希望的靶向递送和药物毒性降低的主要突破。在细胞水平上,药物的封装显着影响纳米载体 - 膜相互作用引起的内吞过程。在这项研究中,我们合成并表征了由N-乙烯基-2-吡咯酮的两亲寡聚组组装的纳米载体,并与末端硫代二烷基(PVP-OD)组成。发现PVP-OD的溶解自由能线性地取决于其亲水性部分的分子质量至M n = 2×10 4,从而导致临界聚集浓度(CAC)对摩尔质量的指数依赖性。将一种模型疏水化合物(DII染料)加载到纳米载体中,并以18小时的比例表现出缓慢的释放到水相中。使用胶质母细胞瘤(U87)和纤维细胞(CRL2429)细胞比较了负载的纳米载体和游离DII的细胞摄取。尽管DIV> DII/PVP-OD纳米载体和自由DII均被Dynasore抑制,这表明在存在Wertmannin的情况下观察到了自由DII的摄取率的降低。这表明,虽然巨细胞增多症在摄取低分子成分中起作用,但通过将DII掺入纳米载体中可以避免这种途径。
表面活性代谢物(例如生物表面活性剂)通常是细胞外产生的,因为这些分子具有可变的两亲性结构,可减少sur的面部和界面张力(Twigg等人2021)。这些两亲性结构具有不同的极性作用,因为它们由不同的亲水性和水力恐惧症部分组成,它们基于结构和功能对生物表面活性剂进行分类。这些两亲性结构的疏水部分源自脂肪酸或其衍生物,而亲水性裂缝率是源自肽,碳水化合物,脂肪醇,羧酸,羧酸,碳水化合物,碳水化合物,氨基酸,氨基酸或磷酸盐或磷酸盐或磷酸盐(Eldin等。 2019)。 细菌生物表面活性剂具有显着的乳化性和表面正确的联系,使其在各种环境应用中尤为重要。 细菌生物表面活性剂的毒性和生物降解性降低使它们比合成表面活性剂更有利2019)。细菌生物表面活性剂具有显着的乳化性和表面正确的联系,使其在各种环境应用中尤为重要。细菌生物表面活性剂的毒性和生物降解性降低使它们比合成表面活性剂更有利
引用出版版本的引用:Li,M,Li,Q,Q,Xu,M,Liu,B,Calatayud,DG,Wang,L,L,Hu,Hu,Z,James,TD&Mao,b 2021,'''aphiphiLic工程,用于使用有机污染剂的碳氧化碳纤维涂层的碳氧化物氧化物降低的石墨烯氧化物的倒置工程。184,pp。479-491。 https://doi.org/10.1016/j.carbon.2021.08.045
概述随着人类生物系统中潜在的生物医学应用的磁性纳米颗粒研究(NP)的指数增加,细胞毒性反应已越来越成为关注的重要主题。 用生物活性反应刺激标记的磁NP通常具有高度的两亲性环境,它们可以与水溶性贫血可能性高的生物学成分相互作用。 因此,磁NP的细胞毒性成为其在界面和整体中都理解的适用性的重要组成部分。 当磁NP与血流接触时,这是人类生物系统最重要的渠道,通常用于治疗性NP的各种生物学应用时,这尤其是一个重要的问题。 用不同的两亲性官能团标记的氧化铁NP具有与血细胞膜相互作用的潜在亲和力,并通过表面吸附的官能团诱导溶血。 表面吸附分子的官能团还促进了磁NP与血细胞膜的相互作用,并定量确定提取的血细胞量。 为了估计血细胞提取对不同官能团体性质的依赖性,可以合成用各种两亲性分子稳定的氧化铁NP。 两亲性分子具有强大的能力,可以同时同时进行亲水和疏水相互作用,同时吸附在纳米金属表面上,从而促进功能化NPS与生物系统的相互作用。 教学教师1。概述随着人类生物系统中潜在的生物医学应用的磁性纳米颗粒研究(NP)的指数增加,细胞毒性反应已越来越成为关注的重要主题。用生物活性反应刺激标记的磁NP通常具有高度的两亲性环境,它们可以与水溶性贫血可能性高的生物学成分相互作用。因此,磁NP的细胞毒性成为其在界面和整体中都理解的适用性的重要组成部分。当磁NP与血流接触时,这是人类生物系统最重要的渠道,通常用于治疗性NP的各种生物学应用时,这尤其是一个重要的问题。用不同的两亲性官能团标记的氧化铁NP具有与血细胞膜相互作用的潜在亲和力,并通过表面吸附的官能团诱导溶血。表面吸附分子的官能团还促进了磁NP与血细胞膜的相互作用,并定量确定提取的血细胞量。为了估计血细胞提取对不同官能团体性质的依赖性,可以合成用各种两亲性分子稳定的氧化铁NP。两亲性分子具有强大的能力,可以同时同时进行亲水和疏水相互作用,同时吸附在纳米金属表面上,从而促进功能化NPS与生物系统的相互作用。教学教师1。该提案证明了氧化铁磁NP的潜在用途是提取血细胞的极好的车辆,尤其是当它们用那些具有良好生物相容性与血细胞膜具有良好生物相容性的两亲性分子稳定时。因此,只有当溶血反应最小的时候,并且只有当磁NPS与细胞膜表达生物相容性时,则该提取才能有效。因此,该提案对于对生物界面和批量上磁NP的适用性的基本理解至关重要。目标本课程的主要目标如下:量化溶质 - 溶剂相互作用的大量和空气界面。b。两亲性分子和亲水性 - 脂肪平衡(HLB)。c。具有头部组和疏水性尾部修饰的高表面活性双子表面活性剂的合成和表征(间隔长n = 2、4、6、8和烃链长度M = 8、10、12、12、14、16)。d。从实验室量表到试点植物的生产,两亲性稳定的氧化铁NP的合成。e。氧化铁NPS在从水溶液中定量提取血细胞的适用性,以及使用磁性纳米颗粒的风险和缓解。Mandeep Singh Bakshi博士2。Jaspreet博士Kaur Rajput3。Rajeev Jindal博士
聚合物合成,定义明确的聚合物纳米结构,两亲块共聚物自组装,可降解的聚合物,水凝胶,生物材料,聚合物 - 聚合物 - 聚合物 - 聚合物 - 聚合物生物医学应用,聚合物药物应用,多聚合物药物配方,用于组织式矩阵,组织式矩阵
摘要 在过去的二十年中,聚合物囊泡已被广泛研究用于癌症治疗中诊断和治疗剂的输送。聚合物囊泡是稳定的聚合物囊泡,使用不同分子量的两亲嵌段聚合物制备而成。使用高分子量两亲共聚物可以操纵膜特性,从而提高药物输送效率。与脂质体相比,聚合物囊泡更稳定,体内毒性更小。此外,它们能够封装亲水性和疏水性药物,具有显著的生物相容性、坚固性、高胶体稳定性以及简单的配体结合方法,使聚合物囊泡成为癌症治疗中治疗药物输送的有希望的候选材料。本综述重点介绍了聚合物囊泡在癌症治疗和诊断中的应用的最新进展。
聚合物合成,定义明确的聚合物纳米结构,两亲块共聚物自组装,可降解的聚合物,水凝胶,生物材料,聚合物 - 聚合物 - 聚合物 - 聚合物 - 聚合物生物医学应用,聚合物药物应用,多聚合物药物配方,用于组织式矩阵,组织式矩阵
2指南,Nirant药房Boramani Solapur摘要聚合物胶束提出了一种可行的药物输送和靶向研究方法。与表面活性剂胶束相比,聚合物胶束是纳米级胶体颗粒,它们是从两亲性块共聚物中自组装的。它们的内核具有溶解大量疏水物质的能力。本文介绍了有关聚合胶束的许多主题,包括其基本原理,其中包括其大小,形状,化学,一般特征,结构分析和生产机制。也强调了多种聚合物胶束。在这里,我们特别关注了在多种应用中使用聚合物胶束作为纳米载体的最新进步,包括治疗癌症,治疗Covid-19,口服药物递送,皮肤药物递送,多核苷酸分布以及向大脑递送。聚合物胶束作为药物输送和有针对性应用的研究工具表现出巨大的希望。两亲性块共聚合物自组装以形成自组装的纳米级胶体颗粒,称为聚合物胶束。聚合物胶束由于其特殊的生物相容性,毒性很少,血液循环持续时间的延长以及能够在其胶束核心内溶解大量药物的能力,因此发现了广泛的应用。根据分子间力,聚合物胶束分为常规,Polyion复合物,并非共价连接。本文中解释了三种类型的准备方法。他们直接溶解,溶剂蒸发和透析法。这里使用的评估技术是关键的胶束浓度,大小和形状,体外药物释放行为。聚合物胶束可以用作向某些位置输送的药物,可以通过使用聚合物胶束来实现。关键字:块共聚物,溶解,聚合物胶束和胶束,药物输送,聚合物和纳米载体。引言称为聚合物胶束的自组装纳米颗粒由两亲性块聚合物组成,它们同时是亲水和疏水性块聚合物。与常规两亲物相似,两亲块聚合物还在临界分子浓度(CMC)上方的水溶液中产生聚合物胶束[1]。聚合物胶束与常规表面活性剂单体胶束相比,在疏水性核心内的单个表面活性剂分子之间形成了共价连接。此链接阻止了胶束伪相和自由解之间单体的动态交换。这证实了聚合物胶束的稳定性和刚度。该聚合物胶束中颗粒的大小为10-10 nm,比磷脂囊泡小。[2]聚合物胶束的尺寸受两亲性块共聚物的分子量,两亲和的聚集数以及亲水性和