摘要:聚合物膜的渗透性和反应性与用于货物输送的聚合物体的设计绝对相关。因此,我们在此将阿霉素负载(dox负载)的无反应性和刺激反应性聚合物的结构特征,渗透性和反应性与其体外和体内抗肿瘤性能相关联。聚合物囊泡(PHPMA),与聚[N-(4-异丙基苯甲酰胺)乙基酰胺乙基甲基甲基甲基酯(甲基甲基甲基酯)(Pppha)(Pppha)(pppha)(pppha)(pppha)(pppa),非pphha,nonnon block,nonnon block) poly [4-(4,4,5,5-甲基-1,3,2-二甲苯甲基-2- Yl)甲基丙烯酸酯] [Pbape,反应性氧(ROS) - 响应型块]或Poly [2-(二异丙基氨基)乙酰乙烯乙烯酸乙烯酸乙烯酸乙烯酸乙烯酸乙烯酸乙酯](Pdpa)(pdpa),pdpa,ph-ph-block)。与抗肿瘤活性相比,基于PDPA的聚合体表现出出色的生物学性能,其抗肿瘤活性显着增强。,我们将这种行为归因于酸性肿瘤环境中快速触发的DOX释放,这是由pH响应性多聚合体拆卸pH <6.8所引起的。可能,所选肿瘤模型的ROS浓度不足会削弱Ros响应囊泡降解的速率,而PPPHA块的无反应性质显着影响这种潜在的纳米甲酶的性能。
CRISPR 介导的原代人类淋巴细胞基因组编辑通常通过电穿孔进行,这可能具有细胞毒性、繁琐且成本高昂。本文我们展示了通过递送与筛选确定的两亲肽混合的 CRISPR 核糖核蛋白可以大幅提高编辑后的原代人类淋巴细胞的产量。我们通过递送 Cas9 或 Cas12a 核糖核蛋白或腺嘌呤碱基编辑器敲除 T 细胞、B 细胞和自然杀伤细胞中的基因来评估这种简单递送方法的性能。我们还展示了肽介导的核糖核蛋白递送与腺相关病毒介导的同源定向修复模板配对可以在 T 细胞受体 α 恒定位点引入嵌合抗原受体基因,并且工程细胞在小鼠中表现出抗肿瘤效力。该方法干扰最小,不需要专用硬件,并且与通过顺序递送的多重编辑兼容,从而最大限度地降低了基因毒性的风险。肽介导的核糖核蛋白细胞内递送可能有助于制造工程化 T 细胞。
最近,针对性的纳米壳的设计用于癌症化学疗法提供了另一种方法。一方面可以通过使用药物包裹的纳米颗粒来拉长血液循环时间并改善肿瘤药物内疏水性药物的生物利用度。另一方面,它可以通过将药物封装的纳米颗粒与靶向配体连接在一起,从而促进肿瘤药物的递送。5,6 These nanovehicles are o en made from macromo- lecular materials such as poly(lactide- co -glycolide) (PLGA), chi- tosan and poly-hydroxyethyl methacrylate/stearic acid, forming dendrimer, liposomes, 7,8 polymers 9 and inorganic nano- particles.10中的壳聚糖(CS)是通过脱乙酰化获得的阳离子自然多糖,是地球上第二大最丰富的生物聚合物损失。11,12 Cs也被称为有希望的生物材料,因为它的生物降解性,无毒性,生物相容性和免疫性。13 - 15但是,CS的水分溶解度差会限制其在药物输送中的应用。16在我们先前的研究中,低分子量的两亲性寡核酸壳可自我组装成水中的纳米细胞,已合成
) 被用作药物递送系统 (DDS) 中的基质。根据 TMAMA 单元中的反离子类型,它们被分为单药物系统和双药物系统,前者表现为具有氯反离子并负载异烟肼 (ISO) 的离子聚合物,后者的特点是 ISO 负载于自组装 PAS 结合物中。通过测定临界胶束浓度 (CMC) 证实了这些共聚物的两亲性质,显示离子交换后数值增加(从 0.011–0.063 mg/mL 至 0.027–0.181 mg/mL)。自组装特性有利于 ISO 包封,单系统和双系统中的药物负载量 (DLC) 都在 15% 到 85% 之间。体外研究表明 ISO 释放百分比在 16% 到 61% 之间,PAS 释放百分比在 20% 到 98% 之间。采用2,5-二苯基-2H-溴化四唑(MTT)试验进行的基本细胞毒性评估,证实了所研究的系统对人类非致瘤性肺上皮细胞株(BEAS-2B)无毒性,尤其是在同时含有ISO和PAS的双系统的情况下。这些结果证实了聚合物载体在药物递送中的有效性,并展示了其在联合治疗中用于药物递送的潜力。
在诸如生物医学和人机互动之类的有吸引力平台的快速发展已经对具有高强度,灵活性和自我修复功能的智能材料产生了紧迫的需求。然而,由于非共价键合固有的低强度,高强度,低弹性模量和治愈能力之间的交易挑战了现有的自我修复能力材料。在这里,从人类纤维细胞中汲取灵感,基于两亲离子限制器(7000倍的体积单体捕获)中的分离和重新构造,提出了一种单体捕获合成策略,以开发出Eutectogel。从纳米配置和动态界面相互作用中获得的好处,形成的配置结构域的分子链主链机械地加强了软运动能力。所产生的共凝剂表现出优异的机械性能(比纯聚合的深层共晶溶剂比抗拉伸强度和韧性高1799%和2753%),出色的自我修复效率(> 90%),低切向切向模量(在工作阶段的0.367 MPA)以及启发人类的人类活动。该策略有望为开发高强度,低模量和自我修复的可穿戴电子设备提供新的视角,适合人体运动。
生物纳米孔是在单分子水平上检测生物分子的强大工具,使它们成为生物样品的传感器。然而,在存在生物液的情况下,纳米孔居住的脂质膜可能不稳定。在这里,用两亲聚合物PMOXA-PDMS-PMOXA和PBD-PEO形成的膜被测试为纳米孔传感的潜在替代方法。我们证明,聚合物膜可以具有增加对应用电位和高浓度的人血清的稳定性,但是稳定的广泛生物纳米孔的插入最常受到损害。另外,杂种聚合物脂质膜包含PBD 11 PEO 8和DPHPC的1:1 W/W混合物,在为所有经过测试的纳米孔创造合适的环境时,表现出较高的电气和生化稳定性。分析物(例如蛋白质,DNA和糖)有效采样,表明在杂化膜中,纳米孔显示出类似天然的特性。分子动力学模拟表明,脂质形成了由聚合物基质散布的12 nm结构域。纳米孔被分配到这些脂质纳米域和隔离的脂质中,可能具有与天然双层中相同的结合强度。这项工作表明,在[PBD 11 PEO 8 + DPHPC]膜中使用纳米孔进行的单分子分析是可行的,并且在人血清存在下呈现稳定的记录。这些结果为新型纳米孔生物传感器铺平了道路。
近年来,人们对物质的自组织进行了广泛的探索,在由不同聚合物材料(共聚物嵌段、均聚物混合物或两亲性聚合物)自组装而产生的多孔有序膜领域取得了重大进展。微组织膜中的层次有序结构,也称为蜂窝状(HC)结构,可显著提高材料的特定特性,从而增强材料的某些性能。自组装多孔膜的制备采用不同的方法。我们在此采用自下而上的微孔结构化方法,特别是呼吸图(BF)方法,从聚合物混合物中制备高度有序的膜。使用 BF 的首要动机是实施简单,并且适用于多种系统,这使其成为一种生产结构化表面的强大且廉价的技术。由 BF 形成的蜂窝状(HC)结构是水处理的潜在候选材料,可用作过滤膜来处理石油和天然气工业中遇到的稳定油水乳液。与商用均聚物膜相比,均聚物共混物的使用提高了选择性、渗透性和抗污性能。本演讲将重点介绍通过 BF 制备自组装均聚物膜共混物及其在工业废水清洁中的性能和污染/再利用潜力。关键词:微孔表面;聚合物共混物;呼吸图;水处理
聚合物胶束和胶囊是抗肿瘤药物载体的有希望的候选材料。生物降解性和广义的生物相容性是用于医疗应用的聚合物应始终具有的关键特征。精心设计的输送系统应确保化疗药物安全运输到目标区域,从而最大限度地减少全身暴露于这些药物,限制其毒性作用,最好是限制其对癌细胞的毒性作用。聚合物胶束通常专门用于封装不溶于水的药物。胶束结构通常是由各种两亲性嵌段共聚物在水环境中自组装而成的。更先进的方法用于形成具有液体核心和由熔融聚合物纳米或微粒制成的外壳的胶囊。这种涂层可以具有均质或异质成分。Janus 和斑块胶囊通常具有更实用和更先进的特性。虽然一些聚合物载体设计用于持续释放货物,但更复杂的方法涉及在选定的化学或物理刺激的影响下按需释放有效载荷。可用的聚合物种类繁多,并且由不同种类的单体形成共聚物的可能性非常广泛,这使得聚合物材料成为生产具有所需特性的药物输送系统的理想选择。本综述的目的是总结聚合物胶束作为细胞抑制药物载体的某些方面,并考虑到临床应用。另一个目标是展示基于刺激响应胶囊(其外壳由聚合物颗粒制成)创建替代系统的研究。
疏水性是由纤维真菌产生的小两亲性细胞外蛋白。它们是表面活性蛋白,它们的功能主要与它们在疏水 - 亲水性接口处自我组装成两亲性单层的能力有关。取决于其水文模式和纯粹的要求,它们被分为I类和II类;两者都在整个序列中均表现出八个保守的半胱氨酸,形成了四个拆桥,它们产生了四个循环,可以使蛋白质以其单体和折叠形式稳定。I类杂菌环比II类杂菌环更扩展,从而导致不同表面的组装差异,并伴随着蛋白质结构的构象变化。 在单体杂素糖基化形式中,疏水素富含β-地表结构,同时在水中组装时 - 空气界面在其结构中增加了β-单表的含量,并且与水的界面和疏水固体在界面上,以及诸如TE的杂化固体,例如TE的形成也诱导了α-α-α-α-α-α-α-elix -Helix -Helix -Helix -Helix -Helix -Helix -Helix -a -Helix -a -Helix -α-固定结构。 由I类生成的单层是稳定的结构,称为纤维或rodlets,II类仅产生聚集体。 I类在其序列中呈现糖基化链。这会导致α-螺旋结构的形成,从而促进有序的组件,这需要它们的稳定性和高不溶性。 原纤维可以与三氟乙酸和甲酸分离,而三乙酸可以展开蛋白质,而60%乙醇和2%十二烷基硫酸钠溶液解散了II类聚集体。I类杂菌环比II类杂菌环更扩展,从而导致不同表面的组装差异,并伴随着蛋白质结构的构象变化。在单体杂素糖基化形式中,疏水素富含β-地表结构,同时在水中组装时 - 空气界面在其结构中增加了β-单表的含量,并且与水的界面和疏水固体在界面上,以及诸如TE的杂化固体,例如TE的形成也诱导了α-α-α-α-α-α-α-elix -Helix -Helix -Helix -Helix -Helix -Helix -Helix -a -Helix -a -Helix -α-固定结构。由I类生成的单层是稳定的结构,称为纤维或rodlets,II类仅产生聚集体。I类在其序列中呈现糖基化链。这会导致α-螺旋结构的形成,从而促进有序的组件,这需要它们的稳定性和高不溶性。 原纤维可以与三氟乙酸和甲酸分离,而三乙酸可以展开蛋白质,而60%乙醇和2%十二烷基硫酸钠溶液解散了II类聚集体。I类在其序列中呈现糖基化链。这会导致α-螺旋结构的形成,从而促进有序的组件,这需要它们的稳定性和高不溶性。原纤维可以与三氟乙酸和甲酸分离,而三乙酸可以展开蛋白质,而60%乙醇和2%十二烷基硫酸钠溶液解散了II类聚集体。
近年来,通过氢键、疏水作用、π-π作用及静电作用等构建了亲水聚合物水凝胶,由于其良好的弹性、生物黏附和生物相容性等特性,在生物和医学领域得到了广泛的应用。杨建军研究组设计了一种具有靶向功能的紫杉醇水凝胶,将叶酸作为靶向基团引入凝胶体系,通过均匀的纳米球交织构成三维网络,得到小分子水凝胶,该水凝胶中紫杉醇的载药量可达49.4%,高于许多药物递送系统的包封量。徐建军研究组利用过表达酯酶的宫颈癌细胞,合成了受酯酶影响的多肽分子。这些分子可以进入细胞并自组装成纳米纤维,然后纳米纤维相互缠绕形成水凝胶,导致宫颈癌细胞死亡。8然而,以两亲性小分子为代表的这些水凝胶不可避免地需要较高的温度才能形成凝胶,这限制了它们作为大分子药物(蛋白质、基因等)的载体的应用。环糊精(CD)是一种大环化合物,具有良好的水溶性和生物相容性,因此,它因与有机和生物基质的特定结合而备受关注。由CD构建的超分子水凝胶已广泛应用于环境响应