喉癌(LC)是头部和颈部第二常见的恶性肿瘤。由于其阴险的性质,大多数患者在被诊断出来时已发展到中期和晚期,缺少最佳治疗期。因此,早期检测,诊断和治疗对于改善LC的预后和提高患者的生活质量至关重要。在这项研究中,通过结合磁珠(MBS)富集策略和抗体-DNA介导的催化发夹自组装(CHA)信号放大效果技术来开发表面增强的拉曼(SERS)传感平台。4-在纳米塔时,将胃苯苯甲酸(4-MBA)和发夹DNA 1(HPDNA1)(hpDNA1)修饰到金纳米果仁酰胺(GNBPS)的表面上。发夹DNA 2(HPDNA2)修饰的MB用作捕获纳米探针。在CHA和磁体诱导的MBS富集的作用下,GNBP可以组装在MB的表面上,形成高密度的“热点”,以增强SERS信号。结果表明,SERS传感平台具有高灵敏度,高特异性和高可重现性的优势,其检测极限(LOD)低至Pg/mL水平。SERS感应平台成功地检测了LC患者血清和健康对照组中CYFRA21-1的表达水平。通过酶连接的免疫吸附测定(ELISA)验证了SERS结果的准确性。因此,该SERS传感器可用于在血清中检测CYFRA21-1,为早期诊断LC提供了一种简单可靠的新方法。
f i g u r e 1通过癌症类型的晚期癌症患者的比例,他们有资格获得与生物标志物相关的治疗或由生物标志物指导的临床试验。改编并从Normanno等人,2022年进行更新。9基于AACR Genie Real -World基因组数据集的内部分析,版本8版(AACR Project Genie Consortium,2017年10)。基于2015 - 2017年UK Cancer Research的癌症发病率。 由英国癌症研究和国家癌症研究所的监视,流行病学和最终结果(SEER)计划和其他来源的晚期疾病患者的比例。 基于FDA批准的批准治疗。 Clinical trial biomarkers (cancer types are excluded where drugs have already been approved): ERBB2 mutation and amplification (excluding breast, NSCLC, and stomach), KRAS G12C (excluding NSCLC), CCNE1 amplification, STK11 (NSCLC only), MET amplification, PALB2 (breast, pancreas, ovary), ARID1A, EGFR (excluding NSCLC), IHD1/2 (excluding biliary), PIK3CA (excluding breast), AKT1/2/3 (excluding breast), CDK12, ERBB3/4 amplification and mutation, FGFR1 fusion and mutation, ATM (excluding prostate), BAP1, CTNNB1, NF1/2和PTCH1。 AACR表示美国癌症研究协会;中枢神经系统,中枢神经系统;美国食品和药物管理局FDA; Genie,基因组学证据肿瘤信息交流; NSCLC,Nonsmall细胞肺癌; SCLC,小细胞肺癌。基于2015 - 2017年UK Cancer Research的癌症发病率。由英国癌症研究和国家癌症研究所的监视,流行病学和最终结果(SEER)计划和其他来源的晚期疾病患者的比例。基于FDA批准的批准治疗。Clinical trial biomarkers (cancer types are excluded where drugs have already been approved): ERBB2 mutation and amplification (excluding breast, NSCLC, and stomach), KRAS G12C (excluding NSCLC), CCNE1 amplification, STK11 (NSCLC only), MET amplification, PALB2 (breast, pancreas, ovary), ARID1A, EGFR (excluding NSCLC), IHD1/2 (excluding biliary), PIK3CA (excluding breast), AKT1/2/3 (excluding breast), CDK12, ERBB3/4 amplification and mutation, FGFR1 fusion and mutation, ATM (excluding prostate), BAP1, CTNNB1, NF1/2和PTCH1。AACR表示美国癌症研究协会;中枢神经系统,中枢神经系统;美国食品和药物管理局FDA; Genie,基因组学证据肿瘤信息交流; NSCLC,Nonsmall细胞肺癌; SCLC,小细胞肺癌。AACR表示美国癌症研究协会;中枢神经系统,中枢神经系统;美国食品和药物管理局FDA; Genie,基因组学证据肿瘤信息交流; NSCLC,Nonsmall细胞肺癌; SCLC,小细胞肺癌。
反馈放大器双端口网络:阻抗参数、导纳参数、混合参数、传输参数。理想的反馈放大器:增益稳定性、信噪比、对增益和带宽的影响。反馈放大器的类型;负载效应。实际反馈放大器:电压放大器、跨导纳放大器、跨阻抗放大器、电流放大器、稳定性预测、频率响应。
最简单、最普遍的放大定义可能来自 Clerk 等人。他们指出,“放大涉及使一些与时间相关的信号变大”[1]。在我们更详细地了解放大过程之前,我们先解释一下为什么“使一些与时间相关的信号变大”在电路 QED 中至关重要,以此来激励放大器。在超导电路的读出过程中,信噪比至关重要。除其他因素外,信噪比还会影响需要进行多少次重复测量才能获得清晰的结果,或者是否可以进行单次读出。读出腔的输出可以被视为量子信号,因为传输线的电磁激发仅涉及几个光子 [2]。从这个寒冷的地方到室温下的测量装置,最初已经很弱的信号会进一步衰减,热噪声和电噪声也会添加到信号中。室温下射频线的本底噪声已经远高于初始信号的激励。因此,如果不对原始信号进行任何类型的放大,几乎不可能看到任何读出信号。现在,图 1.1 中可以看到“使一些时间相关信号变大”如何有助于维持初始 SNR。虽然放大器本身会给信号添加一些噪声,但放大器会通过放大因子 G 抑制放大器后添加到信号中的所有损耗和噪声。实际上,会使用多级放大。如图 1.2 所示,在腔体输出处进行第一次放大之后,通常使用 4 K 的高电子迁移率晶体管 (HEMT) 和室温下的暖放大器进一步放大信号。
由于电信、医疗、计算机和消费电子等所有市场领域对便携式应用的更小尺寸和更长电池寿命的需求不断增长,低压低功耗硅片系统的发展趋势日益增长。运算放大器无疑是模拟电子电路中最有用的设备之一。运算放大器的构建复杂程度各不相同,可用于实现从简单的直流偏置生成到高速放大或滤波等功能。仅需少量外部元件,它就可以执行各种模拟信号处理任务。运算放大器是当今使用最广泛的电子设备之一,被用于各种消费、工业和科学设备中。运算放大器,通常称为运算放大器,是模拟电子电路中使用最广泛的构建模块之一。运算放大器是一种线性器件,它不仅具有理想直流放大所需的几乎所有特性,还广泛用于信号调节、滤波和执行数学运算,如加、减、积分、微分等。运算放大器通常是一个 3 端器件。它主要由一个反相输入端(在运算放大器符号中用负号(“-”)表示)和一个同相输入端(用正号(“+”)表示)组成。这两个输入端的阻抗都非常高。运算放大器的输出信号是两个输入信号之间的放大差,或者换句话说,是放大的差分输入。通常,运算放大器的输入级通常是差分放大器。运算放大器是一种具有相当高增益的直流耦合差分输入电压放大器。在大多数一般
2 从 EMC 角度看 D 类放大器 9 2.1 D 类放大器基础知识 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2 D 类放大器的 EM 发射 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3 D 类放大器的特性分析 . . . . . . . . . . . . . . . . . . . . . . . 24
2 从 EMC 角度看 D 类放大器 9 2.1 D 类放大器基础知识 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2 D 类放大器的 EM 发射 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3 D 类放大器的特性分析 . . . . . . . . . . . . . . . . . . . . . . . 24
在现代通信标准中,功率放大器(PA)必须在越来越大的动态范围和带宽上实现高效率,同时保持严格的线性要求。效率提高可以通过负载调制体系结构(例如Doherty功率放大器)来实现。但是,基于此概念的放大器通常与线性降解有关。在4G网络中,数字预性用于减轻负载调节的放大器的非线性。但是,5G NR系统的更大带宽和复杂性限制了DPD的适用性。本论文旨在解决高效率功率扩增器的固有线性,以便无需有限的预期,可以充分地进行效率。它专注于负载模块的平衡放大器(LMBA)。LMBA是最近的建筑,作为经典Doherty PA的替代品。这里提出了对LMBA的新数学分析,重点是负载调制轨迹。这种基于阻抗的分析导致开发了一种新方法,用于从主晶体管的载荷测量值中设计线性/有效的功率放大器。将此方法应用于10W gan Hemt,我们表明,在单端配置中具有相似性能的三个不同的放大器在LMBA档案中使用时的性能非常不同。根据我们的理论,LMBA的幅度(AM-AM)和相(AM-PM)畸变取决于负载轨迹。然后,在GAAS技术中使用相同的方法在1W频段1W MMIC放大器上应用。选择它以使相失真最小化,然后可以选择第二个谐波终止以最大化效率。j级第二谐波终止被确定为最佳情况,导致-40.5dBC ACLR(相邻的通道泄漏比),当用10 MHz刺激10 MHz时,在2.4GHz的耗尽效率为40.5%,为8.6db Papr(峰值平均电力比)LTE信号。但是,在这些频率下,第二个谐波终止对功率放大器的效率的影响很小。缺乏这种额外的自由度,不能为缓解AM-PM选择载荷轨迹,并且效率/线性权衡会降低。最后,提出了阻抗不匹配在功率放大器中的起源和影响。研究了输出阻抗不匹配下负载调制平衡放大器的性能。我们观察到,如果未在输出处显示最佳阻抗,则会取消LMBA的效率提高。然后提出了一种新型的双重平衡LMBA,以实现高效率功率放大器中的不匹配弹性。
2 从 EMC 角度看 D 类放大器 9 2.1 D 类放大器基础知识 ......................。。9 2.1.1 功率级。。。。。。。。。。。。。。。。。。。。。......10 单端功率级 [21, 22]: .........10 差分功率级 [16, 23]: ......。。。。10 2.1.2 调制。。。。。。。。。。。。。。。。。。。........12 2.1.2.1 脉冲宽度调制 (PWM) .......12 2.1.2.2 差分 D 类放大器的 PWM ......14 二元调制: ..................14 三元调制: ....................15 2.1.2.3 自激振荡调制 ........。。。。。。。。16 2.2 D 类放大器的 EM 发射 ...................18 2.2.1 输出轨的 EMI ......................18 2.2.2 供电轨处的 EMI .......。。。。。。。。。。。。。。。20 2.2.3 EMC 解决方案。。。。。。。。..................22 2.3 表征 D 类放大器 .....。。。。。。。。。。。。。。24
2 从 EMC 角度看 D 类放大器 9 2.1 D 类放大器基础知识 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2 D 类放大器的 EM 发射 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3 D 类放大器的特性分析 . . . . . . . . . . . . . . . . . . . . . . . 24