马克斯普朗克人类发展研究所成立于 1963 年,致力于研究人类生命周期和历史时期的发展和教育过程。除了在学校和其他机构环境中学习之外,研究所的研究人员还探索人类发展如何受到身体和认知因素、社会环境、环境和时代精神的影响。研究团队调查的问题包括“我们如何在年老时保持心理健康?”,“环境对我们的大脑、行为和心理健康有何影响?”,“儿童如何学习?”,“人类情感如何受到历史的影响,它们如何继续塑造历史?”,“我们如何在日益复杂的世界中做出正确的决定?”,“数字化给社会带来了哪些挑战,我们如何才能最好地应对这些挑战?”来自不同学科的研究人员——包括心理学、社会学、历史、计算机和信息科学、医学、
Ti-Mo-TiC 金属基复合材料的选择性激光熔化工艺优化 Bey Vrancken a,b、Sasan Dadbakhsh c,d、Raya Mertens c、Kim Vanmeensel a、Jef Vleugels a、Shoufeng Yang c、Jean-Pierre Kruth (1) ca 比利时鲁汶天主教大学材料工程系 b 美国加利福尼亚州利弗莫尔劳伦斯利弗莫尔国家实验室 c 比利时鲁汶天主教大学机械工程系 PMA、法兰德斯制造商成员 d 瑞典斯德哥尔摩皇家理工学院生产工程系 采用选择性激光熔化 (SLM) 加工 CP Ti、6.5 wt% Mo 和 3.5 wt% Mo 2 C 粉末混合物。优化工艺参数以获得全密度、无裂纹的零件。在原位分解 Mo 2 C 以利于形成 TiC 之后,该材料由均匀分散在 β-(Ti,Mo) 基质中的亚微米级 TiC 薄片组成,硬度高达 550 HV,压缩屈服应力为 1164 ± 37 MPa。可以通过在高密度加工窗口内改变工艺参数以及通过后处理热处理来调整微观结构和机械性能。选择性激光熔化 (SLM)、金属基复合材料、钛
气体中辐射的吸收和发射本质上是量子力学过程。分子中离散能级的存在是原子尺度系统量子特性的体现。基态是唯一的稳定状态,而任何激发态分子即使不受干扰,一段时间后也会通过跃迁到基态或其他较低状态来降低其内部能量。激发态的一般瞬态特性与状态能量的不确定性有关,如海森堡不确定性关系所示。因此,在两个确定的量子态之间跃迁期间发射的光子的能量也是不确定的,跃迁能量统计分布在与这两个状态相关的中心能量周围。
Franck Saint-Marcoux(PharmD,Phd)担任完整毒理学教授的职位,目前负责Limoges大学医院(法国)药理学和毒理学系的临床和法医毒理学单位。他获得了分析化学的主要程度,药学的高级研究的主要学位和2004年的药代动力学建模博士学位。他是同行评审的国际期刊中70多篇论文的作者或合着者,并在50多次国际会议上发表了演讲。自2017年4月以来,他与临床部门的Shimadzu Eu-Ic欧洲创新中心合作,开发了用于在毒理学中实施串联LCM的工具。圣马尔库克斯教授,非常感谢您为这次采访分配一些时间。
将灯外壳滑入仪器后面的插槽中,并将4mm的香蕉插头连接到12V AC或DC电源。插入蓝色过滤器。使用纳米安(NA)选择实验1并打开前面板开关,以便显示值将显示值。将罚款控制设置为大约“一半”位置。使用粗制控制,调整背部伏特,直到纳米安的读数非常接近零。然后使用良好的控件来达到零纳米压力。等待几秒钟以确保它完全为零。记下用于光源前面使用的颜色过滤器的背伏读数。重复测量以获得平均值。依次重复上面的每个颜色过滤器,并在每种情况下记下衬板。每次,重复一次或两次测量以获得平均电压。将“ x”轴的结果绘制为Hz x10 14中颜色的频率,而“ y”轴作为伏特中的后伏,然后绘制每个关系。在5分中绘制最佳拟合的直线图。Planck的常数('H')是该线(DV/DF)X电子(1.6x10 -19库罗姆斯)的斜率。理论上,“ H'= 6.626x10 -34
Wolfgang Ostwald将1914年的胶体和界面研究描述为“被忽视的维度世界”,直到几年前,这一说法实际上才有其理由。但是我们实际上是通过胶体理解的?胶体是分布良好的单位,其尺寸从纳米到千分尺范围,并且具有高表面/体积比。它们在活泼的自然界(血液,牛奶,细胞)以及技术世界(颜色,墨水,药物),微电子或建筑材料中无处不在。因此,已经检查了胶体研究的许多方面。为什么一个研究所在11年前成立了该研究领域的基础知识?的化学和物理学都涉及分子水平(“分子科学”)和宏观级别(固体研究)上对结构的产生和理解。两者之间的长度尺度和层次结构本质上都被忽略了。今天,另一方面,我们发现了化学方面有强大的租户,可以准备更大的结构并控制其存储。此外,物理学学会了将宏观结构微型化,并在所有维度上都在网格上使用真空技术构建。1997年,这种“中间种族”成为公共,政治和社会现象,并记录在标语“ Nano Sessions”中。现在的渗透率如此之高,以至于公司将这个特殊科学领域理解为最重要的希望之一。这是1992年尚未预测的发展,但它已经以其中央的纳米科学活动证实了该机构。该研究所现在可以与德国和世界各地的其他活动竞争吗?这一判断无权授予我们,但我们还希望通过该BR和Shear介绍过去两年的研究活动之外的公众。胶体和界面的领域是高度多学科的,并触及了许多专业学科的特殊语言和知识文化,这些学科并不总是可以理解的。因此,我们在所有缩写的一般介绍之前,在其中工作和动机的工作方式,然后是简短的进度报告。了解一个充满不同印象的世界:生物相i的过程,自组织,具有以前未知分辨率的新测量技术,人工细胞的构建,新的理论方法,规模耦合和新的数值模型算法。
1900 年 12 月 14 日,马克斯·普朗克向德国物理学会提交了他对黑体辐射分布定律的推导,能量量子的概念首次出现在物理学中。考虑到量子理论产生的巨大影响,令人惊讶的是,很少有人关注普朗克迈出引入量子的第一步的推理的详细研究。当然,文献中有许多关于量子理论起源的描述,但几乎所有这些描述在历史上都是不准确的、缺乏批判性的,而且对于普朗克自己的工作及其背景都具有很大的误导性。我们确实有普朗克的回顾性记述[1],这些记述清晰而一致地描绘了他自己对这一发展的看法,还有罗森菲尔德[21]的一篇关于量子理论早期的优秀专著,该书对普朗克的工作进行了恰当的历史背景介绍,但鲜为人知。在我看来,如果我们要充分理解普朗克决定性一步的性质,以及它在多大程度上标志着与先前思想的真正决裂,仍然有两个关键问题必须回答,这两个问题并非毫无关联。第一个问题实际上是一个历史问题:普朗克是否知道瑞利推导出的辐射分布定律是经典物理学的必然结果?大多数作者对这个问题的回答是肯定的,并将普朗克引入量子描述为他对经典理论与实验结果不一致以及经典理论在“紫外灾变”中表现出的内部失败所带来的“危机”挑战的回应。事实上,根本没有这样的危机,或者说根本没有意识到这样的危机。1900 年夏天之前,所有关于黑体辐射的研究都是在不了解古典物理学对这个问题意味着什么的情况下进行的。直到 1900 年 6 月,瑞利勋爵才发表了一份两页的说明,其中首次推导出古典分布定律,瑞利论文的非常严重的意义在相当长一段时间内才被普遍认识到。普朗克在 1900 年和 1901 年的论文中没有提到瑞利的说明,在多年后发表的关于量子理论起源的论述中也没有提到瑞利。然而,普朗克似乎知道瑞利的工作,但他并不认为它比他对大约在同一时间发表的其他几篇论文更有意义,在这些论文中,或多或少地尝试了临时方法。