由于其优异的介电性能,玻璃可以作为表面离子阱制造中石英或蓝宝石的低成本替代材料。与高电阻率(5000 Ω·cm)硅衬底(20 MHz 时的典型损耗角正切为 1.5)相比[24],本文采用的玻璃衬底(Corning SGW 8.5)在 5 GHz 时的损耗角正切为 0.025,体积电阻率为 10 10 Ω·cm(数据可从产品信息表获得)。这省去了硅阱所需的射频屏蔽层和绝缘层,并使制造程序变得更加简单。此外,透明玻璃(波长为 300 至 2400 nm 的透射率为 90%)可以使光的传输和收集更加灵活,例如,通过在下面放置光纤和/或光电探测器。 [25]与其他介电材料(如蓝宝石和石英)相比,玻璃不仅成本低,而且可制造性更先进,可以实现高可靠性的玻璃通孔、[26,27]阳极键合、[28]
微生物燃料电池 (MFC) 是一种基于微生物的燃料电池 (MFC),可通过细菌活动产生可再生能源。通过使用产电细菌作为催化剂,这种生物电化学燃料电池能够将化学能直接转化为电能。产电细菌通过一系列细胞外电子转移 (EET) 机制(称为阳极呼吸)将电子转移到 MFC 的阳极,产电细菌专门通过氧化提取电子。产生的电子随后被转移到阴极,在阴极上用于氧化化合物的还原反应(即电能(或者,在空气阴极MFC的情况下,是氧气)[1]。通过添加营养物质作为能源,可以同时实现可再生能源的生产。因此,人们认为利用有机废物发电的MFC技术前景广阔。然而,由于MFC的内阻大、输出电压低,单个MFC产生的能量实际上是无用的,这是主流的MFC技术(它甚至不能直接激活低功率电子设备)
金属空气电池是一种有希望的储能解决方案,但是材料的限制(例如金属钝化,低活性材料利用率)阻碍了其采用。我们研究了一个固体燃料流量电池(SFFB)结构,该体系结合了金属空气电池的能量密度与氧化还原流量电池的模块化。具体而言,金属固体电化学燃料(SEF)在空间上与阳极电流收集器分离。两者之间溶解的氧化还原介体穿梭电荷,氧气还原阴极完成了电路。这种修饰会解除功率和能量系统组件,同时实现机械可再核能并降低非均匀金属氧化的影响。我们进行了一项探索性研究,表明金属SEF可以重复降低有机氧化还原介质。随后,我们为CA操作了概念验证的SFFB单元。25天作为技术可行性的初步证明。总的来说,这项工作说明了这种存储概念的潜力,并突出了改进的科学和工程途径。目录图像:
在本工作中,开发了一种使用差异脉冲伏安法技术的伏安法,用于评估抗染料和镇痛药,乙酰氨基酚。制备并表征CuO纳米颗粒。使用了用CuO纳米颗粒(Cuonps)和多壁碳纳米管(MWCNT)制造的玻璃碳电极(GCE)。修饰的电极通过在磷酸盐缓冲液中引入阴离子表面活性剂硫酸钠,显示出改善的阳极峰电流。在生理pH值为7.4的情况下研究了支撑电解质的pH,纳米颗粒悬浮液的量和表面活性剂浓度的影响。使用差异脉冲伏安法,制造的电极显示了对乙酰氨基酚浓度的线性动态范围。从校准图中,计算出的检测极限为5.06 nm,定量极限为16.88 nm。该方法在一天的日期和盘中也测试了其可重现性和测定。开发的过程是有效地应用的,以检测给婴儿施用的小儿口服悬浮液中的对乙酰氨基酚。
抽象的贵金属氧化物(例如二氧化芳族)是酸性电解质中阳极反应的高度活性电催化剂,但是电化学操作期间的溶解阻碍了在可再生能源技术中的广泛应用。改善对纳米晶体等应用相关形态的溶出动力学的基本理解对于这些材料的网格尺度实施至关重要。在本文中,我们报告了在氧化条件下二氧化碳纳米晶体溶解期间通过液相透射电子显微镜观察到的纳米级异质性。单晶唯一二氧化物纳米晶体可直接观察沿不同晶体学方面的溶解度,从而可以对晶体方面的稳定性进行前所未有的直接比较。纳米级观察结果揭示了横跨不同纳米晶体的晶体相相的相对稳定性的实质异质性,这归因于这些晶体中存在的纳米级菌株。这些发现突出了纳米级异质性在确定诸如电催化剂稳定性之类的宏观特性中的重要性,并提供了一种可以将其集成到下一代电催化剂发现工作中的特征方法。简介
本评论论文概述了无机腐蚀抑制剂,包括其类型,动作机制,应用程序,最新进步和未来方向。无机腐蚀抑制剂已被广泛用于保护金属和合金免受各种行业的腐蚀,例如石油和天然气,化学和建筑行业。本综述中讨论的不同类型的无机腐蚀抑制剂包括金属,基于金属的基于金属的基于磷酸盐,基于硅酸盐,基于硅酸盐和其他无机抑制剂。无机腐蚀抑制剂的作用机理主要与它们在金属表面上的吸附,保护膜的形成以及阴极和阳极极化有关。本文还强调了无机腐蚀抑制剂在不同行业中的应用,并讨论了它们的有效性和局限性。还回顾了无机腐蚀抑制剂领域的最新进展,例如基于纳米技术的抑制剂,绿色抑制剂,组合抑制剂和计算研究。总而言之,本文总结了审查的关键发现,并为开发无机腐蚀抑制剂的发展提供了前景。审查得出的结论是,需要进一步的研究来为各种工业应用开发更有效,环保和经济的无机腐蚀抑制剂。
摘要:热管理是要求最高的探测器技术以及未来微电子技术面临的主要挑战之一。微流体冷却已被提议作为现代高功率微电子散热问题的全面解决方案。传统的硅基微流体设备制造涉及先进的基于掩模的光刻技术,用于表面图案化。此类设施的有限可用性阻碍了其广泛开发和使用。我们展示了无掩模激光写入的相关性,它可以有利地取代光刻步骤并提供更适合原型的工艺流程。我们使用脉冲持续时间为 50 ps 的 20 W 红外激光器雕刻和钻孔 525 µ m 厚的硅晶片。使用阳极键合到 SiO 2 晶片来封装图案化表面。机械夹紧的入口/出口连接器使完全可操作的微冷却装置得以完成。该装置的功能已通过热流体测量验证。我们的方法构成了一个模块化微加工解决方案,可以促进共同设计的电子和微流体新概念的原型研究。
在工业水开垦的领域,常规技术和先进的氧化过程(AOP)通常在解决有机污染物带来的挑战方面缺乏。电化学技术正在成为一种有希望的解决方案,尤其是为了去除生物危险物质。这项全面的审查研究了各种电化学工具的复杂性,用于处理被有机污染物污染的废水。目标包括阐明基本过程方面的目标,探索操作参数和反应堆设计对性能的影响,严格评估利弊,并通过识别关键的研究点来设想其实际应用潜力。讨论涵盖了直接的电化学氧化,通过电活性氯的间接电化学氧化以及阳极和阴极过程之间的协同作用。审查还严格评估了用于实施这些技术的反应堆选项。另一个方面涉及电容性去离子(CDI),这是一个依赖电气双层形成的必不可少的脱盐过程。一个子类别,插量电容性去离子(ICDI),利用插材料在施加电压后通过离子插入电极晶体结构来实现脱盐。
摘要:热管理是最苛刻的检测器技术和微电子学的未来的主要挑战之一。微流体冷却已被提议作为现代高功率微电子中热量耗散问题的完全集成解决方案。基于硅的微流体设备的传统制造涉及用于表面图案的先进的,基于面膜的光刻技术。此类设施的有限可用性阻止了广泛的开发和使用。我们演示了无掩模激光写作的相关性,以有利地替换光刻步骤并提供更原型的过程流。我们使用脉冲持续时间为50 ps的20 W红外激光器雕刻并钻出525 µm厚的硅晶片。阳极键与SIO 2晶片用于封装图案表面。机械夹紧入口/出口连接器完成了完全操作的微动设备。该设备的功能已通过热流体测量验证。我们的方法构成了一个模块化的微观分化解决方案,该解决方案应促进针对共同设计的电子和微流体的新概念的原型研究。
随着世界快速发展的经济,天然气,石油和煤炭等不可再生的自然资源的征收日益增加。这些不可再生的资源是环境污染的主要来源,它对减少污染和环境保护的需求构成压力。为了克服这些问题,搜索者正在专注于未来的替代性清洁能源,低成本和环保资源[1 E 7]。氢是能量载体的合适候选者之一,通过光催化和电化学水分裂方法对此进行了广泛研究[8 E 13]。与大规模生产的光催化相比,电解具有较高的效率[14 E 17]。elec- trocatalysts在电解过程中起着至关重要的作用,在电解过程中,由于阴极氢进化反应(HER)和氧作为阳极氧进化反应(OER)而产生氢。到目前为止,她的铂(PT)和OER的氧化偶氮被认为是最好的电催化剂,但稀缺性和高成本限制了它们的大规模生产[18,19]。氢被认为是在不久的将来可以将能量从化学能量转化为燃料电池中的电能的主要来源。用于氢生产,通常使用碱性电解方法。在碱性水电中,强大的碱性培养基被用作电解质,而hy- droxide阴离子则通过这种强的碱性培养基传递到阳极表面,它们会在其中失去电子。像镍之类的过渡金属是贵族金属的良好替代品,因为低成本,高催化性能和地球丰富的材料。应在细胞中使用具有高离子迁移率的电解质,以扩大有合并性。氢氧化钾(KOH)通常用于碱性水电解中,以避免酸性电解质发生的腐蚀问题[20,21]。通过电催化水分裂方法生产氢非常昂贵,而且碳氢化合物的产生中有96%的氢生产[22]。研究人员正在专注于开发具有较高电催化效率且对她的较低电势的新材料的新策略[23]。在电化学中,她是一个广泛调查的行动。为了增强反应动力学,阴极材料必须具有高催化效率,低成本,高表面积和高化学稳定性的特殊组合[24]。除了这些特征外,催化剂的受控形态和表面结构是