在本文中,我们设计并模拟了28/38 GHz双波段多输入多输出(MIMO)贴片天线阵列,该贴片天线阵列在FR2频带(28 GHz和38 GHz)中运行。此天线阵列包括四个具有矩形“ L负两个插槽”形状的类似贴片天线。此外,它适用于5G电子组件,例如智能手机。我们使用高频结构模拟器(HFSS)软件来执行此天线的设计和仿真。此外,该提出的天线阵列提供了更好的性能,例如;大约28 GHz的带宽等于0.69 GHz,38 GHz等于0.86 GHz,等于5。9 dB在28 GHz时,在38 GHz时为9 dB,目录在28 GHz时为6.3 dB,在38 GHz时为9.4 dB,在28 GHz时为95.38%的效率为95.38%,效率为96.53%,为96.53%。
在金属天线表面的等离子体共振可以极大地增强拉曼散射。固有的固有性是,极端场限制缺乏精确的光谱控制,这将在塑造光和分子振动之间的光力相互作用方面具有巨大的希望。我们将一个实验平台降低,该平台由等离子纳米胶体胶体天线组成,该平台与开放的,可调的Fabry-Perrot微腔耦合,以选择性地解决具有强拉曼散射强的分子的单个振动线。由腔模式的杂交和等离子宽共振引起的多个狭窄和强烈的光学共振,用于同时增强激光泵和光学态的局部密度,并使用严格的模态分析来表征。多功能自下而上的制造方法允许通过理论和实验性地进行定量比较与裸纳米胶体系统的定量比较。这表明混合系统允许具有狭窄的光学模式的类似SERS增强比例,为分子验光力学中的动态反应效应铺平了道路。
抽象的高折射率介电介电纳米antennas通过辐射通道的设计通过purcell效应强烈修改衰减速率。由于其介电性质,该领域主要是在纳米结构内和间隙内进行的,这很难使用扫描探针技术进行探测。在这里,我们使用单分子荧光寿命成像显微镜(SMFLIM)来绘制介质间隙纳米二二聚体的衰减速率增强,中位定位精度为14 nm。,我们在纳米坦纳(Nanoantenna)的间隙中测量的衰减速率几乎是玻璃基板上的30倍。通过将实验结果与数值模拟进行比较,我们表明,与等离激元纳米ant的情况相反,这种较大的增强本质上是辐射的,因此在量子光学和生物效率等应用中具有巨大的潜力。
摘要本文为能源工程主题,尤其是能源收集领域做出了重要贡献。无线功率传输(WPT)是最近在该领域使用的最广泛使用的方法之一,可以为Rectenna Systems等环境以干净的方式发电。Rectenna系统的主要组成部分是微带贴片天线(MPA)。这是本文提出一个新的概念1×4圆形极化MPA阵列的新颖概念,以在2.45 GHz的谐振频率(射频频率能量收集(RFEH)系统)的谐振频率下运行。基本MPA元件是使用中心插槽的正方形天线,在四个角处与缺陷的地面结构(DGS)方法相结合。为了提高天线的性能,以与Rectenna系统的整合电路集成,这是RFEH中最常用的系统。通过CST MWS软件和HFSS求解器获得的仿真结果表明,本文中的这种新颖设计在反射系数,电压站立波比,轴向比率,轴向比率,方向性和增益为2.45 [GHz]方面具有良好的性能。此开发的MPA适用于各种RFEH应用。
广泛的纳米光子应用依赖于极化相关的等离子体共振,这通常需要具有各向异性形状的金属纳米结构。这项工作通过破坏材料介电常数的对称性,证明了极化相关的等离子体共振。研究表明,导电聚合物的分子排列可以产生具有极化相关等离子体频率和相应的平面双曲介电常数区域的材料。这一结果不仅仅是基于各向异性电荷迁移率的预期结果,还意味着电荷载体的有效质量在聚合物排列时也变得各向异性。这一独特特征用于展示圆对称纳米天线,其提供与排列方向平行和垂直的不同等离子体共振。纳米天线可通过聚合物的氧化还原状态进一步调节。重要的是,聚合物排列可以使等离子体波长和共振蓝移几百纳米,形成一种新方法,以实现可见光氧化还原可调导电聚合物纳米天线的最终目标。
dmitriev,P.A.,Lassalle,E.,Ding,L.,Pan,Z.,Neo,D.C.J.,Valuckas,V.,Paniagua -dominguez,R.,Yang,J.K.W.,Demir,H。V.(2023)。杂种介电 - 质量纳米antena,具有子波长光子源的多散性。ACS Photonics,10(3),582-594。https://dx.doi.org/10.1021/acsphotonics.2c01332
摘要。本文讨论了一种具有圆极化特性的紧凑型 Koch 曲线分形边界天线。辐射器呈方形,四边有 V 型槽截头。分形结构的工作频带为 2.18 GHz 至 2.3 GHz 频段。沿辐射贴片的周边融入了二阶 Koch 分形曲线。分形天线由同轴探针馈电技术激励,对角放置以产生圆极化辐射。贴片元件采用 HFSS 设计,并制造在具有介电常数 (er = 2.2) 的基板 (RT/Duroid 5880 TM) 上,用于设计尺寸为 0.39 k 0 9 0.39 k 0 9 0.024 k 0 (fr = 2.26 GHz) 的分形天线。该结构表现出 6.93 dBi 的峰值增益响应以及覆盖工作频带的全向辐射模式。模拟和测量结果得到验证,并且发现所提出的设计适用于空间应用。
应用信息学系,托马斯·巴塔大学(Tomas Bata University)位于兹林,捷克共和国兹林:10.15199/48.2023.01.03目前,纳米antennas代表着未来的巨大潜力,科学界正在为开发这些设备付出很多努力。许多出版物都涉及不同类型的等离激元,介电或混合动力,以及纳米ant的结构,例如偶极子,Yagi-uda等;因此,想法是创建一篇文章,总结了过去五年中使用这些设备的可能性。本文重点介绍了当前研究的天线类型的简要描述,尤其是在科学领域,并列出了纳米antennas的最常见应用。Streszczenie。corecnie nanoantenymająZnacznyPotencjałNaPrzyszłość,społecznośćNaukowawkładaWkładaWieleWieleWyleWyleWyleWosiVowrozwójtych tychurządzeńwiele publikacji dotyczyró目标Typów,Takich Jak Plazmoniczne,Dielektryczne Lub Hybrydowe,Oraz Struktur nanoanten,Takich Jak Dipol,Yagi-uda i inne inne; ZrodziłSięCpomysłStworzeniaartykułuPodsumowującegoMoêmoêmoMmliwościwykorzystania tychurządzedzevenwciąguostatnichpięciuęciuciuciucipiciutla。w artykule skupionosięnazwięzłejCharakterystycecorecnie badanychrodzajów天线,ZwłaszczaWobszarze naukowym,Oraz wymieniononajczęstszeStszeZastosovaniaZastosowania anten nanoAnoanteny。在无线电工程中,天线将电流和磁电流转换为无线电波,相反。[1]微型化的需求导致需要调整天线的尺寸至纳米阶。换句话说,每秒可以在此频段中传输Terabits。(przeglądzastosowańnanoanten)关键字:纳米反纳纳,通信,材料,纳米技术,纳米技术SłowaKluczowe:nanoantenny,zastosovanie nanoanten介绍,如今,天线是无线信息传输技术的必不可少的信息,以及他们的传输技术。但是,这导致了困难,因为纳米 - 安妮纳斯无法像常规天线(其他频率)相同。纳米antennas主要按照THZ的顺序工作,该顺序在通信系统中提供了新的可能性,因为较高的频率可确保更高的速度[2,3,4,5]。另一个优势在于在小型设备中实施的大小和可能性,尤其是在生物医学应用中[6,7,8]。由于尺寸,纳米antennas是很年轻的设备,因此没有悠久的历史。1973年,罗伯特·贝利(Robert L. Bailey)和詹姆斯·C·弗莱彻(James C. Fletcher)获得了电磁波转换器的专利。他们的专利设备非常接近现代的纳米安妮娜设备。在1984年,Alvin M. Marks获得了一种设备的专利,该设备使用了亚微米天线将光直接转化为电力。[9]。纳米annna由三个部分 - 接地平面,光学共振腔和天线制成。天线吸收电磁波,地面平面将光反射回天线,光谐振腔弯曲,并使用接地平面将光集中到天线。[1]。本评论分为四个部分。结论是该论文的贡献。第一部分描述了纳米antennas的类型及其比较,然后概述了纳米antennas的实施的部分。第三部分包含纳米安妮纳斯的申请,其中包括一个摘要表,显示了该应用程序的示例和相关出版物。纳米antennas的类型有几种方法可以分割光学纳米ant剂,例如结构(yagi-uda,偶极),应用(医疗设备)或技术。在本文中选择了最后提到的划分,该文章将天线划分为等离子(金属),介电或金属介电纳米annoantennas。
a 马德里卡洛斯三世大学信号理论与通信系,28911 Legan ´ es,马德里,西班牙 b 伦敦都市大学通信技术中心,英国 c 米兰比可卡大学物理系,20126,米兰,意大利 d 电气工程与计算机科学学院,KTH 皇家理工学院,SE 100 – 44 斯德哥尔摩,瑞典 e TSC。奥维耶多大学电气工程系,33203 Gij ´ on,西班牙 f 焦夫大学工程学院电气工程系,Sakaka 42421,沙特阿拉伯 g LEME,UPL,巴黎南泰尔大学,F92410,阿夫雷城,法国 h 国家科学研究所 (INRS),蒙特利尔,QC,H5A 1K6,加拿大 i 法兰西理工大学,CNRS,里尔大学,ISEN,里尔中央大学,UMR 8520,微电子和纳米技术研究所 (IEMN),F-59313 瓦朗谢讷,法国 j INSA Hauts de France,F-59313 瓦朗谢讷,法国 k电气、电子与通信工程系及研究所智慧城市,纳瓦拉公立大学,31006 潘普洛纳,西班牙 l 蒙特雷技术大学,工程与科学学院 m 罗马大学“Tor Vergata”电子工程系,Via del Politecnico 1,00133 罗马,意大利
Akila Udage,Nadarajah Narendran 照明研究中心,伦斯勒理工学院,21 Union St.,特洛伊,纽约州,美国电话:(518) 687-7100;电子邮件:narenn2@rpi.edu;网址:www.lrc.rpi.edu/programs/solidstate