PHV 首席运营官 Joan Fusco 评论道:“鉴于去年马尔堡疫情在非洲和某些国家首次暴发,拥有一套完整的疫苗应对措施和临床数据以应对这一日益严重的传染病威胁至关重要。PHV 致力于开发其 PHV01 疫苗,用于地方性使用和全球防范。我们的 1 期临床试验不仅是朝着这一目标迈出的第一步,也是重组 VSV 马尔堡疫苗的首次临床试验。与 rVSV-EBOV 疫苗一样,我们希望 PHV01 也能取得类似的成功。PHV 感谢 BARDA 的持续支持,使这第一步成为现实。这一关键里程碑的实现归功于 PHV、其核心团队和广泛的合作者网络的坚定承诺和奉献精神——感谢大家。”
摘要:与年龄相关的黄斑变性(AMD)是失明的主要原因。最近的研究报告说,乳酸/丙酮酸含量高的AMD患者的糖酵解受损。在几项临床研究中观察到升高的同型半胱氨酸(HCY)(HCY)(HHCY),报告HHCY和AMD之间存在关联。我们确定了HHCY对小鼠屏障功能,视网膜色素上皮(RPE)结构(RPE)结构(RPE)结构(CNV)的影响。我们假设HHCY通过在线粒体中诱导代谢开关来促进AMD,其中细胞主要通过高糖酵解速率或“ Warburg”效应产生能量。增加的糖酵解导致乳酸,细胞酸度的产生,血管生成的激活,RPE屏障功能障碍和CNV增加。通过海马分析,免疫荧光和蛋白质印迹实验评估了HHCY下细胞能量产生的评估。海马分析评估了细胞外酸性速率(ECAR)作为糖酵解的指示。hhcy在体内显着增加。Moreover, HHcy up-regulated glycolytic enzyme (Glucose transporter-1 (GlUT-1), lactate dehydroge- nase (LDH), and hexokinase 1 (HK1)) in Hcy-treated ARPE-19 and primary RPE cells isolated from cbs +/+ , cbs +/ − , and cbs − / − mice retinas.因此,靶向糖酵解或NMDAR可能是AMD的新型治疗靶标。抑制GLUT-1或N-甲基-D-天冬氨酸受体(NMDAR)降低了HCY处理的RPE中的糖酵解,并改善了注射HCY的小鼠眼睛的白蛋白泄漏和CNV诱导。当前的研究表明,HHCY导致RPE细胞的代谢转换从线粒体呼吸到AMD期间的糖酵解并确认NMDAR在此过程中的参与。
摘要 Warburg 效应的特点是肿瘤组织代谢转化导致癌细胞葡萄糖摄取和乳酸分泌增加。相应的分子途径从氧化磷酸化转变为有氧糖酵解,这是由于葡萄糖降解机制的变化,即癌细胞的“Warburg 重编程”。参与 Warburg 转化的关键糖酵解酶、葡萄糖转运蛋白和转录因子在致癌过程中经常失调,被认为是极有希望的诊断和预后标志物以及治疗靶点。黄酮类化合物是具有多效活性的分子。黄酮类化合物调节代谢的抗癌作用已在临床前研究中得到广泛证实。黄酮类化合物调节与 Warburg 表型有关的关键途径,包括但不限于 PKM2、HK2、GLUT1 和 HIF-1。本综述文章讨论了黄酮类化合物“抗 Warburg”作用的相应分子机制和临床相关性。最突出的例子是针对性“反瓦博格”措施在癌症管理中的潜在应用。个性化分析和患者分层是预测、预防和个性化医疗背景下实施针对性“反瓦博格”措施的有力工具。
2019 年,结核病 (TB) 造成的死亡人数超过任何其他传染病。多重耐药性和 HIV 合并感染的不断发展加剧了这种流行病。因此,最近的研究集中于确定可与抗分枝杆菌药物联合使用的宿主导向疗法 (HDT),以缩短结核病治疗时间并改善结核病结果。在寻找有效的结核病 HDT 时,研究着眼于免疫代谢,即研究代谢在宿主免疫中的作用,特别是瓦博格效应。在从体外系统到临床的各种实验范式中,关于瓦博格效应在结核病中的作用的研究产生了看似相互矛盾的结果和结论。为了调和这些文献,我们采用历史方法来重新审视瓦博格效应的定义,重新审视癌症领域中瓦博格效应的基础论文,并探索其在免疫代谢中的应用。在建立稳固的背景后,我们评估了研究结核病代谢和免疫代谢的文献,以寻找足够的证据来支持瓦博格效应在结核病免疫中的作用。强调了这些研究中使用的动物模型、巨噬细胞来源物种、感染持续时间和结核分枝杆菌菌株之间的差异的影响。此外,还讨论了使用 2-脱氧葡萄糖作为糖酵解抑制剂的缺点。最后,我们提出了对未来研究结核病瓦博格效应至关重要的实验标准,以协助研究 HDT 对抗结核病。