a 马来西亚霹雳州国油工艺大学健康与分析研究所 b 马来西亚霹雳州国油工艺大学自治系统研究所 c 马来西亚霹雳州国油工艺大学电气与电子工程系 d 马来西亚吉兰丹马来西亚理科大学神经科学系 e 法国勃艮第大学 ERL VIBOT CNRS 6000 电子、信息与图像实验室 (Le2i)
传感神经刺激器是一种用于长期观察大脑活动的先进技术,在闭环神经调节和植入式脑机接口方面表现出巨大潜力。然而,由于记录条件复杂且共模抑制比 (CMRR) 有限,传感神经刺激器记录的局部场电位 (LFP) 可能会受到心电图 (ECG) 信号的污染。在本研究中,我们提出了一种解决方案,用于从传感神经刺激器记录的局部场电位 (LFP) 中去除此类 ECG 伪影。添加同步单极通道作为 ECG 参考,然后应用两种预先存在的方法,即模板减法和自适应滤波。成功去除了 ECG 伪影,并且该方法的性能对残留刺激伪影不敏感。这种去除 ECG 伪影的方法拓宽了传感神经刺激器的应用范围。
DNA 片段化是基于杂交捕获的短读测序中文库制备过程中的一个基本步骤。迄今为止,人们一直使用超声波来制备适当大小的 DNA,但这种方法会导致大量 DNA 样本损失。最近,研究采用了依赖于 DNA 内切酶酶促片段化的文库制备方法来最大限度地减少 DNA 损失,尤其是在纳米量样本中。然而,尽管它们被广泛使用,但酶促片段化对所得序列的影响尚未得到仔细评估。在这里,我们对使用超声波和酶促片段化方法制备的相同肿瘤 DNA 样本的体细胞变异进行了成对比较。我们的分析显示,与通过超声波创建的文库相比,内切酶处理的文库中反复出现的人工 SNV/indel 数量要多得多。这些人工制品以基因组背景下的回文结构、测序读取中的位置偏差和多核苷酸替换为标志。利用这些独特的特性,我们开发了一种过滤算法,可以高特异性和灵敏度地区分真正的体细胞突变和人为噪声。噪声消除恢复了肿瘤样本中突变特征的组成。因此,我们提供了一种信息学算法来解决因内切酶介导的碎片化而产生的测序错误,这是本研究中首次强调的。
技术和生理伪影会干扰脑电图 (EEG) 信号。最常见的伪影之一是受试者眼球运动和眨眼产生的自然活动。眨眼伪影 (EB) 遍布整个头部表面,使 EEG 信号分析变得困难。消除眼电图 (EOG) 伪影的方法已知,例如独立成分分析 (ICA) 和回归。本文旨在实现卷积神经网络 (CNN) 以消除眨眼伪影。为了训练 CNN,提出了一种增强 EEG 信号的方法。将从 CNN 获得的结果与 ICA 和回归方法的结果进行比较,以比较生成的和真实的 EEG 信号。所得结果表明,CNN 在消除眨眼伪影的任务中表现更好,尤其是对于位于头部中央部分的电极。
抽象的超分辨率(SR)是一个不当的反问题,其中具有给定低分辨率图像的可行解决方案集的大小非常大。已经提出了许多算法,以在可行的解决方案中找到一种“好”解决方案,这些解决方案在忠诚度和感知质量之间取得了平衡。不幸的是,所有已知方法都会生成伪影和幻觉,同时试图重建高频(HF)图像细节。一个有趣的问题是:模型可以学会将真实图像细节与文物区分开吗?尽管有些重点侧重于细节和影响的分化,但这是一个非常具有挑战性的问题,并且尚待找到满意的解决方案。本文表明,与RGB域或傅立叶空间损耗相比,使用小波域损失功能训练基于GAN的SR模型可以更好地学习真正的HF细节与伪像的表征。尽管以前在文献中已经使用了小波域损失,但在SR任务的背景下没有使用它们。更具体地说,我们仅在HF小波子带上而不是在RGB图像上训练鉴别器,并且发电机受到小波子带的忠诚度损失的训练,以使其对结构的规模和方向敏感。广泛的实验结果表明,我们的模型根据多种措施和视觉评估实现了更好的感知延续权权衡。
已经进行了各种研究来减少脑电图中的伪影。改进脑带记录技术、使用计算机方法去除伪影以及使用各种滤波器都是提高脑电波记录质量的方法 [3, 7-8]。在 Lee One 等人的干预下,使用自动系统去除伪影,其灵敏度为 82.4%,特异性为 83.3%,并在很大程度上消除了伪影。该方法的灵敏度和特异性在很大程度上类似于由受过训练的操作员去除伪影 [9]。在另一项研究中,肉毒杆菌毒素注射用于减少肌源性伪影,这显著减少了肌源性伪影 [10]。去除肌肉伪影已被证明可将癫痫发作定位的灵敏度从 62% 提高到 81%,其最佳效果是在具有中度至重度肌肉伪影的发作带中。去除伪影可以更早地检测到鱼鳞病改变并检测到隐藏在伪影中的物品 [6]。另一方面,也有研究表明,使用一些方法和计算机程序去除伪影的效度较低[11]。
本研究介绍了一种噪声消除技术,用于 MER 机器通过丘脑底核深部脑刺激/或刺激器 (STN-DBS) 在局部场电位 (LFP) 中进行电刺激获取的丘脑底核 (STN) 神经元微电极信号。我们提出了一种新方法,用于消除由不同于典型 LFP (低频电位) 信号的脉冲发生器触发的诱导刺激伪影。该方法经过处理和准确性测试,并计算用于体外状态的执行。结果表明,该方法可以很好地抑制刺激伪影。并且还在帕金森病 (PD) 受试者 (患者) 的体内状态下进行了测试。它用于处理从 PD 手术中收集的 LFP 信号,以初步探索 STN、DBS 参数 (刺激强度、刺激电压、频率和幅度脉冲宽度) 内 beta 波段同步变化的定量依赖性。研究结果表明,DBS 过程可以克服过度的β频率(30Hz)活动,并且随着 DBS 电流在 1-3V 范围内增加,刺激频率在 60-120Hz 范围内增加,减少程度也随之增加。该方法为探索诱导电刺激对帕金森脑活动的即时效果提供了科学研究和技术支持,并可作为未来技术的研究工具。
最近的研究表明,能够记录患有半晶状体切除术的脑外伤(TBI)患者的脑电图(EEG)中高γ信号(80-160 Hz)。然而,由于与面部和头部运动相关的表面肌电图(EMG)伪影的混淆带宽重叠,因此提取与运动相关的高γ仍然具有挑战性。在我们以前的工作中,我们描述了一种增强的独立组件分析(ICA)方法,用于从EEG中删除EMG伪像,并通过添加EMG来源(ERASE)称为EMG降低。在这里,我们对六名Hemicraniectomies患者记录的EEG测试了该算法,同时他们执行了拇指流失任务。删除的平均值为52±12%(平均±S.E.M)(最大73%)EMG伪影。相比之下,常规ICA从EEG中删除了EMG伪像的平均值为27±19%(平均值±S.E.M)。尤其是,在擦除擦除后,在半晶切除术中的对侧手运动皮层区域中,高γ同步显着改善。更复杂的高γ复杂性是分形维度(FD)。在这里,我们在每个通道上计算了EEG高γ的FD。高γ的相对FD定义为移动状态下的FD在空闲状态下减去FD。我们发现,施加擦除后,高γ的相对FD与半骨切除术相对于半晶状分裂术,与纤维流量的振幅密切相关。的结果表明,与拇指流量相关的电极上的显着相关系数平均为〜0.76,而非流行性辐射切除术区域的同源电极的系数接近0。在常规ICA之后,在两个半开裂区域(最高0.86)和非流行颅切除术区域(最高0.81)中,高γ和力之间的相对FD之间的相关性均保持较高。在所有受试者中,使用擦除后,平均83%的电极与力显着相关。常规ICA后,只有19%的具有显着相关性的电极位于半晶切除术中。
建立的用于诊断肩cap骨骨折的成像方法是X射线,骨扫描,磁共振成像(MRI)和计算机断层扫描(CT),MRI是裂缝检测最敏感和最具体的方法。CT也具有很高的特异性,但灵敏度较低。但是,它通常比MRI更优于MRI,因为它更便宜且更容易获得(1,4,5)。高分辨率外围定量计算机断层扫描(HR-PQCT)代表检测scaphoid骨折的创新选择(6-8)。由于第一个结果直到最近才发布,因此在该领域尚未广泛建立其使用。最初,HR-PQCT旨在测量骨密度并量化骨骼的三维微构造(9)。由于几个原因,包括技术问题,扫描获取和评估缺乏标准化以及与成本相关的有限可用性,其临床价值仍处于边缘状态(10)。然而,近年来,HR-PQCT在许多科学领域都取得了重大进展,例如,在评估流变学疾病对关节表面的影响(11,12)(11,12),骨骼微体系结构和骨骼强度对次生骨质骨的骨骼和代谢性骨骼的影响(10),以及对骨骼的影响(10)的作用,以及对骨骼的效果,以及对骨骼的效果(均具有抗抗病性的作用)(均具有抗抗病性的作用(愈合(14-16)和远端半径裂缝机制的研究(17,18)。
摘要:脑电图 (EEG) 信号很容易受到肌肉伪影的污染,这可能导致脑机接口 (BCI) 系统以及各种医疗诊断的错误解读。本文的主要目标是在不扭曲 EEG 所含信息的情况下去除肌肉伪影。首次提出了一种新的多阶段 EEG 去噪方法,其中小波包分解 (WPD) 与改进的非局部均值 (NLM) 算法相结合。首先,通过预训练的分类器识别伪影 EEG 信号。接下来,将识别出的 EEG 信号分解为小波系数,并通过改进的 NLM 滤波器进行校正。最后,通过逆 WPD 从校正后的小波系数重建无伪影的 EEG。为了优化滤波器参数,本文首次使用了两种元启发式算法。所提出的系统首先在模拟脑电图数据上进行验证,然后在真实脑电图数据上进行测试。所提出的方法在真实脑电图数据上实现了 2.9684 ± 0.7045 的平均互信息 (MI)。结果表明,所提出的系统优于最近开发的具有更高平均 MI 的去噪技术,这表明所提出的方法在重建质量方面更佳并且是全自动的。