Vyesi001@odu.edu ____________________________________________________________________________________________ 摘要 评分者间信度可以看作是评分者对给定项目或情况的一致程度。已采取多种方法来估计和提高受过训练的事故调查员使用的美国国防部人为因素分析和分类系统的评分者间信度。在本研究中,三名受过训练的教练飞行员使用 DoD-HFACS 对 2000 年至 2013 年之间的 347 份美国空军事故调查委员会 (AIB) A 级报告进行分类。总体方法包括四个步骤:(1) 根据 HFACS 定义进行训练,(2) 验证评级可靠性,(3) 评估 HFACS 报告,以及 (4) 随机抽样以验证评级可靠性。属性一致性分析被用作评估评分者间信度的方法。在最后的训练验证轮中,评估员内部一致性范围为 85.28% 至 93.25%,每个评估员与标准的一致性范围为 77.91% 至 82.82%,评估员之间的一致性为 72.39%,所有评估员与标准的一致性为 67.48%。HFACS 评级摘要随机样本的相应一致性为评估员内部 78.89% 至 92.78%,评估员之间的一致性为 53.33%,这与之前的研究一致。这项试点研究表明,训练-验证-评级-确认属性一致性分析方法有可能有助于提高 HFACS 评级的可靠性,并有助于准确捕捉人为因素对飞机事故的影响。需要进行额外的全面研究来验证和充分开发所提出的方法。关键词 事故调查,HFACS,内部评估者信度 简介 Reason (1990) 事故因果模型,也称为瑞士奶酪模型,是一种理论模型,旨在解释事故如何在组织层面上表现出来。该模型的主要假设是,事故发生的方式使得原因在组织层面上具有关系。第二个假设是,至少组织层面需要共同努力以防止事故发生。根据这些假设,Reason 理论认为,大多数事故都可以追溯到先前组织层面的潜在人为失误导致的主动和潜在人为失误。自 2005 年以来,美国国防部 (DoD) 一直使用 HFACS (DOD, 2005) 作为 DOD HFACS,特别是在不安全行为前提条件和不安全行为层面进行了一些更改。.人为因素分析和分类系统 (HFACS) 最初由 Wiegmann 和 Shappell (2003) 根据 Reason 模型改编而成,适用于航空领域,该系统确定了组织内可能发生人为错误的四个层级:组织影响、不安全监督、不安全行为的先决条件和不安全行为。DOD HFACS (2005) 由 4 个主要层级、14 个子类别(在 Wiegmann 和 Shappell 的研究中称为类别)和 147 个纳代码组成,用于对导致飞机事故的组织人为错误进行详细分类。
未来的属性需求研究(FADS)比以往任何时候都更加由他们提供的功能和技术定义。未来的属性需求研究(FADS)清楚地了解了最热的功能,谁想要它们以及哪些车辆应该拥有它们。自1994年以来,Autopacific一直在帮助车辆制造商和供应商完全了解消费者对未来车辆功能和技术的需求,包括通过FADS进行动力总成和车辆类型。具有163个功能,从自动驾驶技术到座位功能,FADS是车辆计划和开发过程中的理想选择。
本白皮书评估了与环境属性信用的生成和使用相关的计划设计特征,以及它们对成本和实现环境目标的影响。分析提出了关于使用可交易信用的要求、时间匹配、额外性、地理边界、验证和跟踪、对新兴技术的偏好以及确保信用价值确定性的方法的观点和现有证据。有证据和理由支持就这些问题提出的一系列立场。尽管计划存在差异,但有强有力的证据表明,使用环境属性信用支持市场发展并促进对环境优先资源的投资。计划要求的严格性提高可确保环境完整性,但如果遵守严格的要求变得过于繁重,也可能阻碍资源扩张。最佳平衡取决于所考虑的设计元素、环境属性和市场发展阶段。
培训生成模型,捕获数据的丰富语义并解释由此类模型编码的潜在表示,这是未/自我监督学习的非常重要的问题。在这项工作中,我们提供了一种简单的算法,该算法依赖于预先训练的生成自动编码器的潜在代码的扰动实验,以发现生成模型暗示的属性图。我们执行扰动实验,以检查给定潜在变量对属性子集的影响。鉴于此,我们表明一个人可以拟合一个有效的图形模型,该模型在被视为外源变量的潜在代码和被视为观察到的变量的属性之间建模结构方程模型。一个有趣的方面是,单个潜在变量控制着属性的多个重叠子集,与试图施加完全独立性的传统方法不同。使用在大型小分子数据集中训练的预训练的生成自动编码器,我们证明,我们算法学到的各种分子属性和潜在代码之间的图形模型可用于预测从不同分布中绘制的分子的特定特性。我们比较了对简单基线选择的各种特征子集的预测模型,以及现有的因果发现和稀疏学习/特征选择方法,以及从我们的方法中衍生的马尔可夫毛毯中的预测模型。的结果从经验上表明,依赖于我们的马尔可夫毛花属性的预测因子在转移或通过新分布中的一些样本进行微调时,尤其是在训练数据受到限制时,分布变化是可靠的。
所有权和能源使用。他们注册生产者,验证属性和产出量,签发 EAC,并在参与账户持有人之间转移 EAC。虽然一些跟踪系统的重点是可再生电力,但一些美国跟踪系统(NEPOOL GIS、NYGATS 和 PJM GAT)为所有发电(包括核能和化石能源)签发和跟踪能源属性证书。这些被称为“证书”,但一般来说,它们是 EAC,允许跟踪管理员核算所有发电并适当分配属性。在某些州,这对于满足州环境或能源披露要求很重要。11 要退出 EAC,索赔人必须在跟踪系统中拥有一个帐户,并且必须将 EAC 转移到退出子帐户中,从该子帐户中不能
用于 HFACS 评分者间信度评估的属性一致性分析方法 T. Steven Cotter 老道明大学 tcotter@odu.edu Veysel Yesilbas,博士。 Vyesi001@odu.edu ____________________________________________________________________________________________ 摘要 评分者间信度可以看作是评分者对给定项目或情况的一致程度。已经采取了多种方法来估计和提高受过培训的事故调查员使用的美国国防部人为因素分析和分类系统的评分者间信度。在本研究中,三名经过培训的教练飞行员使用 DoD-HFACS 对 2000 年至 2013 年期间的 347 份美国空军事故调查委员会 (AIB) A 级报告进行分类。总体方法包括四个步骤:(1) 训练 HFACS 定义,(2) 验证评级可靠性,(3) 评级 HFACS 报告,以及 (4) 随机抽样以验证评级可靠性。属性一致性分析被用作评估评级者间信度的方法。在最后的训练验证轮中,评估者内部一致性范围为 85.28% 至 93.25%,每个评估者与标准的一致性范围为 77.91% 至 82.82%,评估者之间一致性范围为 72.39%,所有评估者与标准的一致性为 67.48%。HFACS 评分摘要随机样本的相应一致性在评估员内部为 78.89% 到 92.78%,在评估员之间为 53.33%,这与之前的研究一致。这项初步研究表明,训练-验证-评级-确认属性一致性分析方法有可能帮助提高 HFACS 评级的可靠性,并有助于准确捕捉人为因素对飞机事故的影响。需要进行额外的全面研究来验证和充分开发所提出的方法。关键词 事故调查、HFACS、内部评估者可靠性 介绍 原因 (1990) 事故因果模型,也称为瑞士奶酪模型,是一种理论模型,旨在解释事故如何在组织层面上表现出来。该模型的主要假设是事故发生的方式使得原因在组织层面上存在关系。第二个假设是,至少组织层面需要共同努力来防止事故发生。根据这些假设,Reason 理论认为,大多数事故都可以追溯到先前组织层面的潜在人为失误导致的主动和潜在人为失误。.人为因素分析和分类系统 (HFACS) 最初由 Wiegmann 和 Shappell (2003) 根据 Reason 模型改编而成,适用于航空领域,该系统确定了组织内可能发生人为错误的四个层级:组织影响、不安全监督、不安全行为的前提条件和不安全行为。自 2005 年以来,美国国防部 (DoD) 一直使用 HFACS (DOD, 2005) 作为 DOD HFACS,但在不安全行为前提条件和不安全行为层面上进行了一些更改。DOD HFACS (2005) 由 4 个主要层级、14 个子类别(在 Wiegmann 和 Shappell 的研究中称为类别)和 147 个纳代码组成,用于对导致飞机事故的组织人为错误进行详细分类。
在过去的二十年中,美国的跟踪系统迅速发展。公用事业监管机构已经了解到,跟踪能源属性提供了一种更简单的方式来支持使用和所有权对可再生能源的主张,而不是更困难的替代方案,例如跟踪合同或跟踪物理电力。跟踪能源属性的系统负责发行能源属性证书(EACS)并管理其转让和所有权,直到退休或要求证书为止。跟踪系统(也称为注册机构)是为许多在EACS交易的市场参与者建立所有权和信誉的关键工作。第一个跟踪系统是由德克萨斯州于2001年启动的,现在在美国有9个主要系统。他们跟踪遵守可再生能源规定,向消费者提供电力源和排放披露信息,并跟踪证书的所有权,以支持自愿采购和能源使用索赔。在所有这些应用程序中,一个主要的目标是避免双重计数:基于相同的兆瓦小时(MWH)(MWH)的证书无需双重发行,并且在同一证书或发电机单位上没有双重索赔。跟踪系统成功地支持了这一结果。
多标签属性识别是计算机视觉中的一项关键任务,应用程序范围在不同的领域。这个问题通常涉及检测具有多个属性的对象,需要具有高级差异和精细的特征提取的复杂模型。对象检测和属性识别的集成通常依赖于诸如双阶段网络之类的方法,其中准确的预测取决于高级特征提取技术,例如感兴趣的区域(ROI)池。为了满足这些要求,在统一框架中既可以实现可靠的检测和属性进行分类,这是必不可少的。这项研究介绍了一个创新的MTL框架,旨在将多人属性识别(MPAR)纳入单模型体系结构中。命名为MPAR-RCNN,该框架通过空间意识到的,共享的骨干,促进效果和准确的多标签预测来符合对象检测和属性识别任务。与传统的基于快速区域的卷积神经网络(R-CNN)不同,该网络(R-CNN)分别管理人的检测和归因于双阶段网络的分类,MPAR-RCNN体系结构在单个结构中优化了两个任务。在更宽的(用于事件识别的Web图像数据集)数据集上进行了验证,提出的模型展示了对当前最新ART(SOTA)体系结构的改进,展示了其在推进多标签属性识别方面的潜力。