威胁检测:我们由Microsoft提供支持的托管SOC和SIEM服务。我们的24*7服务监视您的基础架构,并在发现异常时提醒我们的支持团队。SOC是Node4威胁智能,整理,分析,然后对我们客户的利益行事的枢纽。以及核心服务,我们可以与您的SOC或分析师合作,为您自己的功能或支持功能提供增强。我们不断努力改善SOC内的主动威胁情报,旨在在影响客户之前停止攻击。
一、目的:照片证据可通过提供现场、证据或受伤受害者的视觉图像大大增强刑事调查,并可为检察官提供成功起诉案件所需的证据。在某些情况下,犯罪现场摄影师或专家可能无法到场或被要求前往现场拍照,例如家庭暴力事件、交通事故或轻微事故。虽然摄影可能不是第一响应人员的主要职责,但在适当条件下,响应人员可能会使用照片以图形方式记录案件,从而增强调查能力。
一、目的:照片证据可通过提供现场、证据或受伤受害者的视觉图像大大增强刑事调查,并可为检察官提供成功起诉案件所需的证据。在某些情况下,犯罪现场摄影师或专家可能无法到场或被要求前往现场拍照,例如家庭暴力事件、交通事故或轻微事故。虽然摄影可能不是第一响应人员的主要职责,但在适当条件下,响应人员可能会使用照片以图形方式记录案件,从而增强调查能力。
• 开发下一代高性能计算、通信和导航。 • 开发先进的机器人和航天器自主技术,以实现和增强科学/探索任务。 • 开发支持新兴太空产业的技术,包括:卫星维修和组装、空间/表面制造和小型航天器技术。 • 开发支持新发现的飞行器平台技术。 • 开发支持新发现的科学仪器技术。[低 TRL STMD/中高 TRL SMD。SMD 资助特定任务仪器(TRL 1-9)] • 开发变革性技术,以实现未来 NASA 或商业任务和发现
美国国家标准与技术研究所正在通过公开的、类似竞争的过程选择公钥加密算法。新的公钥加密标准将指定额外的数字签名、公钥加密和密钥建立算法,以增强联邦信息处理标准 (FIPS) 186-4、数字签名标准 (DSS) 以及 NIST 特别出版物 (SP) 800-56A 修订版 3、使用离散对数密码术的成对密钥建立方案建议和 SP 800-56B 修订版 2、使用整数分解密码术的成对密钥建立建议。这些算法旨在能够在可预见的未来保护敏感信息,包括量子计算机出现之后。本报告根据公众反馈和内部审查,描述了 NIST 后量子密码标准化过程第三轮候选算法的评估和选择过程。本报告总结了第三轮候选算法中的每一种,并确定了选定的标准化算法以及将在第四轮分析中继续评估的算法。将要标准化的公钥加密和密钥建立算法是 CRYSTALS–K YBER 。将要标准化的数字签名是 CRYSTALS–Dilithium、F ALCON 和 SPHINCS + 。虽然选择了多种签名算法,但 NIST 建议将 CRYSTALS–Dilithium 作为要实施的主要算法。此外,四种备用密钥建立候选算法将进入第四轮评估:BIKE、Classic McEliece、HQC 和 SIKE。这些候选算法仍在考虑未来的标准化。NIST 还将发布新的公钥数字签名算法征求建议书,以扩充和多样化其签名组合。
美国国家标准与技术研究所正在通过一个公开的、类似竞争的过程来选择公钥加密算法。新的公钥加密标准将指定额外的数字签名、公钥加密和密钥建立算法,以增强联邦信息处理标准 (FIPS) 186-4、数字签名标准 (DSS) ,以及 NIST 特别出版物 (SP) 800-56A 修订版 3、使用离散对数密码术的成对密钥建立方案建议和 SP 800-56B 修订版 2、使用整数分解密码术的成对密钥建立建议。这些算法旨在能够在可预见的未来保护敏感信息,包括量子计算机问世之后。本报告根据公众反馈和内部审查,介绍了 NIST 后量子密码标准化过程第三轮候选算法的评估和选择过程。报告总结了第三轮候选算法中的每一种,并确定了选定的标准化算法以及将在第四轮分析中继续评估的算法。将要标准化的公钥加密和密钥建立算法是 CRYSTALS–K YBER 。将要标准化的数字签名是 CRYSTALS–Dilithium、F ALCON 和 SPHINCS + 。虽然有多个签名算法
美国国家标准与技术研究所正在通过一个公开的、类似竞争的过程来选择公钥加密算法。新的公钥加密标准将指定额外的数字签名、公钥加密和密钥建立算法,以增强联邦信息处理标准 (FIPS) 186-4、数字签名标准 (DSS) ,以及 NIST 特别出版物 (SP) 800-56A 修订版 3、使用离散对数密码术的成对密钥建立方案建议和 SP 800-56B 修订版 2、使用整数分解密码术的成对密钥建立建议。这些算法旨在能够在可预见的未来保护敏感信息,包括量子计算机问世之后。本报告根据公众反馈和内部审查,介绍了 NIST 后量子密码标准化过程第三轮候选算法的评估和选择过程。报告总结了 15 种第三轮候选算法,并确定了选定的标准化算法以及将在第四轮分析中继续评估的算法。将要标准化的公钥加密和密钥建立算法是 CRYSTALS–K YBER 。将要标准化的数字签名是 CRYSTALS–Dilithium、F ALCON 和 SPHINCS + 。虽然选择了多种签名算法,但 NIST 建议将 CRYSTALS–Dilithium 作为要实施的主要算法。此外,四种备用密钥建立候选算法将进入第四轮评估:BIKE、Classic McEliece、HQC 和 SIKE。这些候选算法仍在考虑未来的标准化。NIST 还将发布新的公钥数字签名算法征集提案,以扩充和多样化其签名组合。
自动脆弱性检测(ML4VD)机器学习的抽象最新结果非常有前途。仅给出函数F的源代码,ML4VD技术可以决定F是否包含具有高达70%精度的安全漏洞。但是,正如我们自己的实验中明显的那样,相同表现的模型无法区分包含漏洞和漏洞修补的功能的功能。因此,我们如何解释这一矛盾,以及如何改善评估ML4VD技术的方式以更好地了解其实际功能?在本文中,我们确定对无关的特征和分布外概括的过度拟合是两个问题,这不是通过评估ML4VD技术的传统方法来捕获的。作为一种补救措施,我们提出了一种新型的基准标记方法,以帮助研究人员更好地评估ML4VD技术的真正能力和限制。具体说明,我们建议(i)根据我们的交叉验证算法来增强培训和验证数据集,其中在训练集或测试集的增强过程中,应用语义保留转换,以及(ii)用code spippets进行了漏洞的测试集,以增强漏洞的测试集。使用六种ML4VD技术和两个数据集,我们发现(a)最先进的模型非常适合无关的功能,以预测测试数据中的脆弱性,(b)数据增强所获得的性能并不能超出培训期间的特定增强功能,并且(CART)无法将其范围固定在(CART-CART ML4VD TECHENIQUES上)。