1 法国里昂第一大学 IP2I,CNRS/IN2P3,IP2I-Lyon,F-69622 维勒班 2 加拿大安大略省金斯顿皇后大学机械与材料工程系 K7L 3N6 3 加拿大安大略省金斯顿皇后大学物理、工程物理与天文学系 K7L 3N6 4 法国格勒诺布尔-阿尔卑斯大学 LPSC,CNRS/IN2P3,格勒诺布尔 38026 5 加拿大皇家军事学院化学与化学工程系,安大略省金斯顿 K7K 7B4 6 加拿大阿尔伯塔大学物理系,艾伯塔省埃德蒙顿 T6G 2R3 7 加拿大巴黎萨克雷大学 IRFU,CEA,F-91191 伊维特河畔吉夫 8 劳伦森物理与天文学系大学,加拿大安大略省萨德伯里 P3E 2C6 9 SNOLAB,加拿大安大略省莱夫利 P3Y 1N2 10 Arthur B. McDonald 加拿大天体粒子物理研究所,皇后大学,加拿大安大略省金斯顿 K7L 3N6 11 SUBATECH,IMT-Atlantique/CNRS-IN2P3/南特大学,法国南特 44307 12 太平洋西北国家实验室,美国华盛顿州里奇兰 99352 13 伯明翰大学物理与天文学院,英国伯明翰 B15 2TT 14 塞萨洛尼基亚里士多德大学,希腊塞萨洛尼基 54124
‘几年前,一个名为Axion的洗衣粉盒的超市展示了我的注意。在我看来,“轴”听起来像是粒子的名称,真的应该是一个。因此,当我注意到一个新粒子“清理”了一个“轴向”电流的问题时,我看到了我的机会'。
1 法国里昂第一大学 IP2I,CNRS/IN2P3,IP2I-Lyon,F-69622 维勒班 2 加拿大安大略省金斯顿皇后大学机械与材料工程系 K7L 3N6 3 加拿大安大略省金斯顿皇后大学物理、工程物理与天文学系 K7L 3N6 4 法国格勒诺布尔-阿尔卑斯大学 LPSC,CNRS/IN2P3,格勒诺布尔 38026 5 加拿大皇家军事学院化学与化学工程系,安大略省金斯顿 K7K 7B4 6 加拿大阿尔伯塔大学物理系,艾伯塔省埃德蒙顿 T6G 2R3 7 加拿大巴黎萨克雷大学 IRFU,CEA,F-91191 伊维特河畔吉夫 8 加拿大劳伦森大学物理与天文学系加拿大安大略省萨德伯里 P3E 2C6 9 SNOLAB,加拿大安大略省莱夫利 P3Y 1N2 10 加拿大皇后大学亚瑟·B·麦克唐纳天体粒子物理研究所,加拿大安大略省金斯顿 K7L 3N6 11 SUBATECH,IMT-Atlantique/CNRS-IN2P3/南特大学,法国南特 44307 12 太平洋西北国家实验室,华盛顿州里奇兰 99352,美国 13 伯明翰大学物理与天文学院,英国伯明翰 B15 2TT 14 塞萨洛尼基亚里士多德大学,希腊塞萨洛尼基 54124
。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。高Q超级导电遣返器,并将其视为由假设的轴突ole介导的逐灯散射的检测器。量子电动力学:Euler -Heisenberg(EH)相互作用。光子频率和模式转换对于检测这种罕见的E V的方案至关重要。超级传导遣返器的非导纳设备。将电磁场限制在超导RF腔的真空区域的Meissner scr频率是EM场在真空– Superpocducducductionfucting界面处的非线性函数,因此可以产生CAV-ITY中微型光照射子的频率转换。在本报告中,我们考虑了具有高质量因子的光子频率和模式转换,该谐振器具有高质量的因子,来自Meissner电流的单个和双腔内电流中的高质量因素,该谐振器提出了基于光线散射的轴和QED搜索。在具有两个泵模式的单个腔中,Meissner筛选的光子频率转换率在Q≲1012的腔中通过EH相互作用来主导光子的产生。Meissner电流还生成背景光子,以限制三模式单腔设置中的轴轴检测的操作。我们还考虑将光子从泵模式泄漏到轴和EH介导的光线散射的信号模式中。EH相互作用通过EH相互作用的光子频率转换可以与Meissner竞争,并在超高Q型腔中的泄漏辐射和泄漏辐射范围内,这超出了当前最新技术状态。Meissner辐射和泄漏背景可以在双腔设置中抑制具有适当选择的泵和观众模式的选择,以及针对杂差检测银河系轴线暗物质的单腔设置。
铁磁轴子晕镜利用轴子与电子自旋的相互作用来寻找以轴子形式存在的暗物质。它由一个轴子-电磁场传感器和一个灵敏的射频探测器组成。前者是一个光子-磁振子混合系统,后者基于量子限制约瑟夫森参量放大器。混合系统由十个直径为 2.1 毫米的钇铁石榴石球组成,通过静态磁场耦合到单个微波腔模式。我们的装置是迄今为止最灵敏的射频自旋磁强计。最小可检测场为 5 . 5 × 10 − 19 T,积分时间为 9 小时,对应于轴子-电子耦合常数 g aee ≤ 1 的极限。 7 × 10 − 11 @ 95% CL 我们研制的晕镜的科学运行得到了暗物质轴子对电子耦合常数的最佳极限,频率跨度约为120 MHz,对应轴子质量范围为42 . 4 – 43 . 1 μ eV。这也是第一台仅通过改变静磁场就能进行宽轴子质量扫描的仪器。
上下文。斧头夸克掘金的存在是轴突场的潜在结果,该结果为量子染色体动力学中的电荷结合奇偶校验违规提供了一种解决方案。除了解释物质抗逆点非对称性的宇宙学差异以及可见的 - 黑暗 /ω可见的比率外,这些复合材料的紧凑型物体还可以通过与普通的Baryonic Matter相互作用来代表潜在无处不在的电磁背景辐射。,我们对局部网络的受约束宇宙学模拟(慢)的群内培养基环境中的轴夸克掘金 - 巴里氏菌相互作用进行了深入分析。目标。在这里,我们旨在通过推断出来自轴突夸克nugget-Cluster-Cluster Gas Itsptrotions的热和非热发射光谱来对银河系簇环境中的电磁对应物进行上限预测。方法。我们使用缓慢的模拟分析了161个模拟星系簇的大型样本中轴夸克掘金的发射。这些集群分为150个星系簇的子样本,以五个质量箱为单位,范围为0。8至31。7×10 14 m⊙,以及11个跨识别星系簇的观测。,我们通过假设所有暗物质由轴夸克块组成,研究了Z = 0的红移,在当前阶段的星系簇中的暗物质 - 巴里氏物质相互作用。结果。19 GHz和νT∈[3。97,10。99]×10 10 GHz。结论。将所得的电磁特征与每个星系簇中的热bremsstrahlung和非热宇宙射线(CR)同步器发射进行了比较。我们进一步研究了模仿WMAP,PLANCK,EUCLID和XRISM望远镜的可观察范围的单个频带,用于最有前途的跨识别星系簇,这些星系簇载有轴突Quark Nugget nuggets发射的可检测到的特征。我们观察到在低能和高能频率窗口中的正值,在该窗口中,热和非热轴夸克掘金发射的发射可以显着有助于(甚至超出)频率(甚至超出)频率的发射(甚至超出),最高为νTt t t t≲3842。如果单个簇的Cr同步加速器发射足够低,则发现可以观察到Axion Quark金块的发射特征。导致发射过量的参数中的退化使得在指出正轴夸克nugget多余的特定区域的预测方面具有挑战性;但是,基于此暗物质模型,预期的总星系簇发射的总体增加。轴夸克掘金构成4。在低能量状态下的总星系簇发射的80%的占3842的低能状态。 19 GHz,用于选择跨识别的星系簇。 我们提出,在寻找斧头夸克掘金发射标志时,福纳克斯和处女群体代表了最有前途的候选人。 我们模拟的结果表明,如果可以充分地将其签名与ICM辐射完全分离,则可以在观察结果中检测出星系簇中的轴夸克掘金过量。占3842的低能状态。19 GHz,用于选择跨识别的星系簇。我们提出,在寻找斧头夸克掘金发射标志时,福纳克斯和处女群体代表了最有前途的候选人。我们模拟的结果表明,如果可以充分地将其签名与ICM辐射完全分离,则可以在观察结果中检测出星系簇中的轴夸克掘金过量。该模型提出了对暗物质组成的有前途的解释,并有可能通过观察结果来验证这种结果,但我们提出了进一步的变化,旨在完善我们的方法。我们的最终目标是确定在不久的将来提取的斧头夸克掘金的电磁对应物。
在21世纪之交附近,弱规模上的超级主体理论预测的引人注目的签名激发了即将到来的实验中对新发现的预期,例如大型强子对撞机和下一代地下暗物质直接检测实验(1,2,2,3)。因此,高能物理学领域的大部分活动都是由一小部分常见范式驱动的,而这些范式可能超出了标准模型。今天,尽管这种实验的持续操作当然很可能很快可能很快发现了Electroweak(〜TEV)量表附近的新物理学,但可能已经大部分的发现潜力已经耗尽了。这种状况导致社区的先验放松了新的物理学,首先要揭露新物理学的地方(4)。例如,尽管发现暗物质与标准模型的其他基本问题(例如层次结构问题)相关,但没有理论上具有吸引力,但没有第一个原理的原因。,高能的新物理学也可能超出了最强大的未来攻略者的范围。但是,即使这是真的,能量极高的动态也会引起新的虚弱耦合的低能自由度,激励观察性签名,这些观察性签名可用于小规模的精确实验。受到先验的这些转变和数据的渴望,许多高能物理学家,牙的和实验家都已经深入参与了构思和开发针对新物理学低能标志的小规模探针(8,9)。这种假设颗粒的两个例子以及本综述的重点是“轴轴”和“暗光子”,即普通锥形和光子的暗区类似物,它们在涉及额外维度和量规耦合统一的理论中无处不在(5,6,7)。这些努力涵盖了许多不同的子场,涉及凝聚态物理,原子物理学和量子信息科学之间的联系。与二十年前相比,高能物理界发现自己处于多元化增加的健康状态。在本综述中,我们旨在为对实验室精确探针和深色光子的非专家提供有用的切入点。在过去的二十年中,有多种文章(例如,参见参考文献。(10,11)),该)调查了当时的最著名实验方法的发展,例如cav-
检测比MEV更重的轴线暗物质受到其小波长的阻碍,这限制了传统实验的有用体积。可以通过直接检测中等激发来避免此问题,后者的〜MEV - EV能量与检测器的大小是解耦的。我们表明,对于磁场内的任何目标,电磁轴轴的吸收率由介电函数确定。结果,可以将以前用于子GEV暗物质搜索的候选目标重新定义为宽带轴测检测器。我们发现,具有与最近测量值相当的噪声水平的kg yr暴露足以探测实验室测试目前未探索的参数空间。降低噪声仅减少几个数量级,才能对〜10 MeV - 10 eV质量范围内的QCD轴敏感。