除非另有说明,所有选段均为 B 调。考生可选择使用 B 调或 C 调小号进行试奏。请按照本资料包中提供的方式准备所有选段。可能还需要即兴演奏。商业/主奏小号选段为可选,仅在半决赛和决赛中听到。独奏选段: 波梅:F 小调协奏曲,第 1 乐章,从 [B] 开始。艾夫斯:关于“美洲”的变奏。独奏 [O](短号 1)。威廉姆斯(译者:Lavender):召唤英雄。选取 [33] 至 [50] 兴德米特:Bb 调交响曲,第 1 乐章,从 I 乐章开始到第 12 乐章。第 2 乐章,从 II 乐章开始到第 26 乐章。普罗科菲耶夫:进行曲,作品 99。 16-56。亚当斯:快速机器中的短途旅行。mm。138-151。科普兰:户外序曲。前四拍[20]到后四拍[30](小号 1)。威尔第(诺伊曼译):纳布科序曲。衔接至[89]至 m。107。沃恩威廉斯:托卡塔马尔齐亚莱。衔接至[7]至[11]。肖斯塔科维奇(亨斯伯格译):节日序曲。衔接至[6]至[7](小号 4)。斯特拉文斯基:士兵的故事。皇家进行曲。开头至[3]。苏萨:跨海之手。前两拍,无重复(短号独奏)。苏萨:伊利诺伊大学进行曲。前两拍,无重复(短号独奏)。格什温 / 里德尔:迷人的节奏。mm。 56-70. 熄灯号与乐部一起演奏的选段:威廉斯(译者:拉文德):《阵亡将士赞歌》. 接续至第 28 小节至第 51 小节。桑特尔曼:《旗官进行曲》。广告/领奏小号选段(可选):布里库斯(编者:福斯特/布坎南):《感觉良好》,[C] 至 [D] 德尔加多(编者:佩拉约/布坎南):《桑东吉塔》,[46] 至第 53 小节加西亚(编者:布坎南):《康加舞曲》,[175] 至 [183] 吉亚奇诺(编者:布坎南):《幕后人员》,[J] 至第 204 小节
独奏选段 菲尔莫尔:《美国人》《我们》,从第二段开始到结束 比才:《阿莱城的女人》,行板极高至 17 后 [E] 斯特拉文斯基:《地狱之舞》选自《火鸟》,330 – 345 毫米 菲尔莫尔:《滚雷》,三重奏 格兰杰:《海边的莫莉》,27 – 42 毫米(包括拾音) 肖斯塔科维奇:《节日序曲》,[26] 至 [27] 伯恩斯坦(Lavender 译):《西区故事》交响舞曲 1. 毫米。404 – 438 2. 毫米。679 – 694 施密特:《狄俄尼索斯舞曲》,[31] 至五后 [33] 吉亚基诺(Buchanan 编排):《片头曲》,[F] 至 m. 147 (不要求爵士设置) 拉赫玛尼诺夫:交响舞曲,[13] 合奏选段后的慢板至四拍子 莫扎特:基于奏鸣曲 K. 379 的二重奏 (请准备上半部分) 可能还需要视奏
选段 门德尔松:《仲夏夜之梦》中的谐谑曲(开场) 菲尔莫尔:《美国人》我们(无重复,取第二个结尾) 勃拉姆斯:第三交响曲,第二乐章,开头 – [B] 贝多芬:第八交响曲(选段) 古诺:《浮士德》中的芭蕾音乐(选段) 达尔:小交响曲,[P] - [R] 博耶:乔伊斯的第七十一首军团进行曲(无重复,取第二个结尾) 韦伯:《奥伯龙》,序曲,接续至《火的快板》 – 5 之前 [A] 柏辽兹:幻想交响曲,第二乐章。 3 (选段) 瓦格纳:《艾尔莎前往大教堂的游行》(选段) 罗西尼:《La Gazza Ladra》序曲,选段从 [7] 开始 与乐团成员一起演奏的选段 施特劳斯:《E 大调小夜曲》,作品 7(单簧管 2)从开头到第 8 部分 5 段在 [F] 之后 - 4 段在 [H] 之前 格兰杰:《林肯郡花束》,第 4 部分,从开头到第 25 部分
5(a)需要提供高度复杂,高度敏感或高度争议的信息,其中需要有说服力,动机,谈判,培训,同理心或再保证技能。这可能是因为需要一致或合作,或者是因为理解高度复杂/敏感/有争议的障碍,例如遗传咨询,终止后丧亲咨询
摘要 莫尔材料为实现具有工程物理特性的能带结构提供了高度可调的环境。具体而言,具有费米面平带的莫尔结构(实现关联相的合成环境)具有包含数千个原子的莫尔晶胞和极其复杂的能带结构。在本文中,我们表明统计原理在解释这些系统的普遍物理特性方面大有帮助。我们的方法建立在三个概念元素之上:由短长度尺度上原子配置的有效不规则性引起的量子混沌的存在、动量空间中的安德森局域化以及近似晶体对称性的存在。这些原理中的哪一个占主导地位取决于材料参数,例如费米面的延伸或莫尔晶格势的强度。这种竞争的现象学后果是对莫尔带特征群速度的预测,这是其平均平坦度的主要指标。除了这些一般特征之外,我们还识别了统计背景之外的结构,特别是接近未受干扰光谱极值的几乎平坦的带,以及著名的零能量“魔角”平坦带,其中后者需要异常精细调整的材料参数。
合金 BaSn_{1–x}Pb_{x}O_{3} Junichi Shiogai、Takumaru Chida、Kenichiro Hashimoto、Kohei Fujiwara、Takahiko Sasaki、
结论总之,对外部半导体的研究为了解半导体物理的基本原理及其在现代电子设备中的实际应用提供了宝贵的见解。通过精心操纵掺杂技术和材料特性,外部半导体在开发具有多种功能和应用的高性能半导体器件方面发挥着关键作用。在整个项目报告中,我们探讨了外部半导体的各个方面,包括它们的能带理论、电性能、制造工艺和未来前景。由于引入了掺杂原子,外部半导体表现出独特的电行为,这在带隙内产生了额外的能级并影响了材料的电导率和载流子浓度。了解这些特性对于设计和优化用于从微电子和光子学到可再生能源和 skaging 等广泛应用的半导体器件至关重要。这些过程需要精确控制和复杂的技术才能实现所需的设备性能和可靠性。先进的材料和制造技术,以及系统级封装 (SiP) 和 3D 集成等创新封装技术,正在推动外部半导体的未来向增强功能、小型化和能源效率的方向发展。展望未来,外部半导体有望在材料科学、设备工程和系统集成方面继续取得进步。物联网 (IoT)、人工智能 (AI) 和边缘计算等新兴技术为半导体研究人员和工程师带来了新的机遇和挑战。通过利用跨学科合作并采用可持续的制造实践,我们可以利用
2:笔试是预筛选流程的一部分,将在申请人最近的海军招聘办公室进行。笔试必须在 9 月 15 日之前完成。提交申请人情况说明书和简历后,将提供此流程的说明。在收到这些说明之前,请不要拜访招聘人员。此步骤可以在 9 月 15 日之前的任何时间完成。