c机械工程系,科罗拉多大学博尔德大学,博尔德,博尔德,美国80309,美国B再生资源和启用科学中心,国家可再生能源实验室,Golden,Co 80401,美国C催化碳转换和规模上心,美国国家可再生能源实验中心,GOLDENITY,GOLDENITY,GOLDENITY,GOLDEN,GOLDINED,GOLDINE CO 80401,美国
提高生物柴油混合率:40%(B40)的生物柴油混合率计划于 2025 年开始实施;2028 年至 2035 年,这一比例将增至 50%(B50)。(请参阅下页了解最低混合率计划。) 生物乙醇混合率:对于非公共服务义务 (PSO) 市场(即非补贴汽油),5% 的生物乙醇混合率计划于 2025 年开始实施。2029 年至 2035 年的混合率为 10%。(请参阅下页了解最低混合率计划。) 优先考虑本土生物燃料:路线图草案仍将确保国内生物燃料供应作为首要任务;但如果国内产量不足且进口价格具有竞争力,则允许进口生物燃料。不过,该草案还规定对从由在印尼注册的公司控股的外国供应商进口的生物燃料提供优惠待遇。印尼公司必须拥有出口公司至少 51% 的股份才有资格享受这一优先待遇。 有机废物:生物燃料生产中允许使用有机废物。
摘要:基于藻类的生物聚合物可用于各种能源相关的应用,例如电池和燃料电池中的分离器和聚合物电解质,也可以用作微藻生物燃料,这被视为高度可再生能源。为了这些目的,必须在本综述中讨论不同的物理,热化学和生化特性,例如孔隙率,高温耐药性或良好的电池机械性能,以及在生物燃料的情况下,基础材料的高能量密度和高能量以及在这些应用中使用Algae Biopolymers的环境方面的基础材料。另一方面,除了潜在用作聚合物电解质外,细菌生物聚合物还经常用于细菌纤维素分离剂或生物聚合物网络粘合剂中。此外,它们还被视为潜在的可持续生物燃料生产商和转换器。本综述旨在比较上述能量转换和存储的生物聚合物。关于藻类生物聚合物生产的挑战包括较低的可伸缩性和低成本效益,以及细菌聚合物,生长缓慢和非最佳发酵过程通常会引起挑战。另一方面,与常规聚合物相比,环境益处和更好的生物降解性是这些生物聚合物的很大优势,这些优势提出了进一步的研究,以使其生产更加经济。
SATS Ltd.(SATS)是Gateway Services和亚洲杰出的食品解决方案提供商的全球领导者。通过衷心的服务和高级技术,我们通过我们为航空公司,邮轮,货运货运人员,邮政服务和电子商务公司等综合客户服务无缝地连接人员,企业和社区。使用创新的食品技术和弹性的供应链,我们以可持续的方式为航空公司,餐饮服务连锁店,零售商和机构创建美味,优质的食物。
需要找到具有巨大潜力的可再生能源资源(RER),这是因为石油和天然气已耗尽了其全容量,从而减少了全球产生的能源量。与制剂有关的问题,与酶的水解以及在可能产生生物能源之前必须完成的生物质培养过程有关的问题仍在持续的计划中得到解决。由于纳米技术为多种响应和操作提供了独特的活性领域,因此它可以克服这些生物质来源带来的困难。热解可用于可持续产生化学物质并从生物质中产生化学物质。但是,该过程的高生产费用阻止了它被广泛使用。使用废热和可再生祖细胞制造高质量的活性碳纳米颗粒,可以大大提高这种方法的长期可靠性和财务可行性。本文建议使用生物量热解生成绿色碳纳米材料(BP-GGCN)进行生物燃料和生物能源生产。建议的方法通过使用残留的热解气体和热废物产生上三维石墨烯气泡(3DGB)来充分利用生物质热解的财务收益和可持续性。最终的3DGB在能源存储和生态敏感的应用中效果很好。根据一项生命周期研究,当前方法的总体效果少于传统的化学蒸气沉积(CVD)技术对人类福祉,环境系统和资源的影响。该GGCN的特定品质可帮助生物燃料,生物柴油,酶和微生物燃料电池效果更好。
摘要:枯草芽孢杆菌是一种多功能的微生物细胞工厂,可以生产有价值的蛋白质和增值化学物质。长片段编辑技术对于加速细菌基因组工程以获得理想且遗传稳定的宿主菌株至关重要。在这里,我们开发了一种有效的CRISPR-CAS9方法,用于枯草芽孢杆菌基因组中的大规模和无疤痕基因组工程,该方法的阳性率为100%,最多可删除高达134.3 kb的DNA片段,是先前报告的3.5倍。还研究了使用异源NHEJ系统,线性供体DNA和各种供体DNA长度对工程效率的影响。然后将CRISPR-CAS9方法用于枯草芽孢杆菌基因组简化和一系列个体和累积的缺失突变体的构建,这些突变体进一步筛选了新一代生物燃料的异丁醇过度生产剂。这些结果表明该方法是一种强大的基因组工程工具,用于构建和筛选具有增强功能的工程宿主菌株,突出了合成生物学和代谢工程的潜力。
司法部税务司代理副助理检察长斯图尔特·戈德堡 (Stuart M. Goldberg) 表示:“法院判处的重刑反映了被告近十年来税务欺诈计划的惊人规模——这是有史以来最大的计划之一。”“德曼和金斯顿家族成员让守法纳税人损失了 5 亿多美元,并试图窃取两倍于此的金额。他们还试图通过银行系统循环数十亿美元的交易来掩盖自己的行踪,并使用燃料购买和油轮来制造他们的工厂实际上在生产和销售符合国税局抵免条件的生物柴油燃料的假象。税务司检察官和国税局特工不仅破获了这一计划——他们还发现、追踪并追回了数百万美元的
Nawa Raj Baral a,b, Zachary D. Asher c, David Trinko d, Evan Sproul e, Carlos Quiroz-Arita, f Jason
使用燃料电池混合动力和全电动动力系统等新车辆技术来供应生物质原料是降低生物燃料生产成本、温室气体排放和健康影响的一种前所未有的解决方案。这些技术已在轻型车辆应用中取得成功,并正在为重型卡车开发。本研究首次对柴油、燃料电池混合动力和全电动卡车的生物质原料供应系统进行了详细的随机技术经济分析和生命周期评估,并以丁醇为代表性生物燃料确定了它们对生物燃料生产的影响。本研究发现,无论评估情况如何,包括卡车的有效载荷(满载和空载)、路面类型(碎石路和铺装路)、道路状况(正常和损坏)和道路网络(地方公路和高速公路),燃料电池混合动力卡车和全电动卡车相对于柴油卡车的能耗更低。使用分别由 H 2 燃料和可再生电力驱动的燃料电池混合动力卡车和全电动卡车,可大幅降低成本和碳足迹,特别是对于长途运输,并最大限度地减少其他经济和环境影响。虽然燃料电池混合动力电动汽车的经济优势取决于 H 2 燃料的价格和道路状况,但使用可减少每 100 公里卡车运输距离的生物丁醇温室气体排放量 0.98 至 10.9 克 CO 2e /MJ。结果表明,转换为全电动卡车运输可分别降低生物丁醇生产成本和每 100 公里卡车运输距离的温室气体排放量 0.4 至 7.3 美分/升和 0.78 至 9.1 克 CO 2e /MJ。这项研究为未来的研究奠定了基础,将指导为纤维素生物炼油厂或其他货物运输系统开发经济、社会和环境可持续的生物质原料供应系统。© 2020 Elsevier Ltd. 保留所有权利。
Gas 7 - 7 9 - 9 7 - 7 1 -59 1 Coal 1 1 2 2 1 1 2 2 Oil 1 12 1 17 1 12 1 1 Other fossil 1 1 1 2 1 1 1 2 Waste non RES 3 - 0 6 77 1 3 - 0 6 77 1 Electricity 4 5 40 3 47 38 4 5 40 3 27 3 District heating 4 - 5 7 17 7 5 - 6 5 -17 5 Biomass 8 8 8 1 69 10 7 9 7 1 137 9 Biofuel 8 8 5 5 9 9 1 1 Biogas 1 1 9 0 1 2 1 1 Ambient heat 7 0 7 5 0 6 7 0 8 5 0 5 Solar 2 0 2 2 0 2 2 0 3 2 0 2 Hydrogen 5 0 5 5 0 1 4 0 5 2 0 0 Other RES 0 0 0 1 0 0 0 0 0 1 0 0 Total 1 - 100 1 - 100 1 - 100 1 -20 1 2