©2023 Wiley -VCH GmbH。保留所有权利。这是以下文章的同行评审版本:Pan,M。H.&Goto,A。(2023)。依赖于拓扑的pH响应性致动和形状记忆编程,用于仿生4D打印。大分子快速通信,44(9),2300074 −,该通信以最终形式出版,网址为https://doi.org/10.1002/marc.202300074。本文可以根据Wiley使用自构货币版本的条款和条件来将其用于非商业目的。
摘要 - 触觉传感对于机器人技术很重要,因为它可以在操纵过程中获得物理接触信息。为了捕获在Compact框架内的多模式接触信息,我们设计了一个名为Vitactip的新型传感器,该传感器将触觉和视觉感知功能无缝地集成到一个单个集成的传感器单元中。vitactip具有透明的皮肤,可在接触过程中捕获物体的精细特征,这被称为透明皮肤机构。同时,嵌入在Vitactip中的仿生尖端可以在触觉感知过程中放大触摸运动。为了进行比较分析,我们还制造了一个没有仿生尖端的Vitac传感器,以及带有不透明皮肤的Tactip传感器。此外,我们开发了一种基于生成的副本网络(GAN)的方法,用于在不同的感知模式之间进行模态切换,从而有效地交替了视觉和触觉感知模式之间的重点。,我们跨三个不同的任务对拟议的传感器进行了性能评估:i)光栅识别,ii)构成回归,iii)接触定位和力估计。在光栅识别任务中,Vitactip的表现为99.72%,超过Tactip,达到94.60%。与VITAC的0.12 mm和0.15N相比,它在姿势和力估计任务中均表现出卓越的性能,最小误差分别为0.08 mm和0.03n。结果表明,Vitactip优于单模式传感器。
近年来,由于其在精确的药物输送和受控释放方面具有独特的优势,响应式纳米材料在生物医学应用中具有巨大的潜力。对于癌症,慢性炎症和遗传疾病等复杂疾病,传统治疗方法通常受到不足的靶向和显着副作用的限制。通过感知内部或外部刺激的响应式纳米技术,显着提高了治疗的精度和效率。这项研究系统地总结了通过全球专利和文献数据的响应纳米材料的技术轨迹和新兴研究方向,采用了主要路径分析,衍生途径分析和关键字同时出现分析。结果揭示了这一领域的演变,从对早期单刺激反应性的纳米递送系统的优化到治疗学整合的兴起,然后在多刺激性响应性的协同疗法中进步,并最终在生物含量材料设计中创新。每个发育阶段越来越集中于适应复杂的生物学环境,实现卓越的靶向性能并增强治疗性效率。关键字共发生分析突出了关键的研究热点,包括仿生设计,多模式协同疗法和新兴响应机制。将来,响应式纳米材料有望在个性化医学,多功能载体设计和复杂的疾病管理中发挥关键作用,从而为精密医学提供新颖的见解和技术支持。
抽象的摩擦电纳米生成剂(Tengs)站在能量收集创新的最前沿,通过扭矩电信和静电诱导将机械能转化为电力。这项开创性的技术解决了对可持续和可再生能源解决方案的迫切需求,为自动系统开辟了新的途径。尽管有潜力,但Tengs仍面临挑战,例如材料优化,以增强摩擦电效应,可伸缩性和在各种条件下提高转化效率。耐用性和环境稳定性也构成了重大障碍,需要对更弹性的系统进行进一步的研究。自然启发的Teng设计通过模拟生物学过程和结构(例如植物的能量机制和动物皮肤的质感表面)提供了有希望的解决方案。这种仿生方法已导致材料特性,结构设计和整体性能的显着改善,包括提高能量转换效率和环境鲁棒性。对生物启发的Tengs的探索已解锁了能源收集,自动传感和可穿戴电子产品的新可能性,强调通过创新设计降低能耗和提高效率。本综述封装了自然界中的挑战和进步,激发了滕斯的启发,强调了仿生原理的整合以克服当前的局限性。通过专注于增强电气性能,生物降解性和自我修复功能,自然启发了Tengs为更可持续和多功能的能源解决方案铺平了道路。
成就 LLNL 整合了工程、材料科学、物理、化学、数据科学、建模和仿真以及制造方面的专业知识,以创造创新解决方案。例如,材料科学家研究材料的化学、电子、结构和动力学特性,包括聚合物、合金、陶瓷、泡沫和仿生材料。研究人员还探索了增强原料开发、制造技术和表征方法的方法,同时研究了可能影响长期性能的材料老化和降解。利弗莫尔专家利用人工智能和数据科学的力量来优化设计并实现材料科学的快速进步。LLNL 的一系列资源为这些成就做出了贡献,例如:
1。教育部的绿色制备和功能材料应用主要实验室,湖北大学,武汉430062,中国2。固体润滑的国家主要实验室,兰州化学物理研究所,中国科学院,兰州730000,中国摘要,世界人口的爆炸性增长以及工业用水消耗的迅速增长,世界供水已陷入危机。淡水资源的短缺已成为一个全球问题,尤其是在干旱地区。本质上,许多生物可以在恶劣的条件下从雾水中收集水,这为我们提供了开发新功能性雾收集材料的灵感。大量的仿生特殊润湿合成表面是合成的,用于水雾收集。在这篇综述中,我们引入了一些自然界的水收集现象,概述了生物水收集的基本理论,并总结了生物水收集的六种机制:表面润湿性增加,水传输面积增加,长距离水的散热,水积累和储存,冷凝水,凝聚力促进和重力促进和重力驱动。然后,讨论了三种典型生物的水收集机制及其合成。及其功能,收集水效率,其仿生材料中的新发展,包括仙人掌,蜘蛛和沙漠甲虫。多种生物学的研究是受到nepenthes潮湿和光滑的蠕动的启发。彼此相互结合的各种生物水收集结构的出色特征远远优于其他单一合成表面。此外,植物雾收集材料的制备和应用的主要问题以及材料雾收集的未来发展趋势。
成就 LLNL 整合了工程、材料科学、物理、化学、数据科学、建模和仿真以及制造方面的专业知识,共同设计创新解决方案。例如,材料科学家研究材料的化学、电子、结构和动力学特性,包括聚合物、合金、陶瓷、泡沫和仿生材料。研究人员还探索了增强原料开发、制造技术和表征方法的方法,同时研究了可能影响长期性能的材料老化和降解。利弗莫尔专家利用人工智能 (AI) 和数据科学的力量来优化设计并实现材料科学的快速进步。LLNL 的广泛资源为这些成就做出了贡献,例如:
引言在最近的过去,灵活的电子技术一直引起人们对可折叠和便携式设备中潜在应用的关注[1]。聚乙烯二氟化物(PVDF)表现出最优质的电活性特性,即Piezo,Pyro,铁电性和光电子。因此,PVDF及其共聚物是增加可能有机微电子应用数量的有吸引力的材料,例如电用量传感器,波导,传感器,执行器,执行器,能量收集,电 - 电器记忆,仿生机器人和组织工程[1-5]。PVDF是一种高度极性物质,涉及单元中的碳原子,氢原子的带正电和氟原子的充电。(–CH2-CF2)或CH 2 CF 2)n的重复单元,其中碳 - 氢键与电
摘要:中度至重度大小的肺泡骨缺损的康复通常具有挑战性。当前,使用的治疗方法包括指导骨再生技术与各种骨移植物结合。尽管这些技术得到了广泛应用,但已经报道了几种局限性和并发症,例如发病率,次优的移植/膜补充速率,低结构完整性和尺寸稳定性。因此,具有量身定制特征的仿生支架的发展可能是一种有前途的工具。本文在脚手架的设计和开发中提出了一个关键的考虑,同时还提供了有关这些纳米系统各种制造方法的信息。也将提及它们作为交付系统的利用。
人造肌肉是那些在应用外部刺激时像骨骼肌肉一样放松的材料的名称。刺激可能是化学或物理刺激(Tondu,2015)。有几种基于不同工作机制创造人造肌肉的方法。一些最常见的是电化学致动,静电执行器,压电,碳纳米管(CNT),形状记忆合金(SMA),气动肌肉(PMS)和复合材料。人造肌肉引起了许多研究人员的注意,此前发动机和电动机为机械系统供电。人造肌肉已用于生物医学设备和仿生机器人的设计和开发。但是,理想的仿生机器人需要专门设计的执行器,以复制自然肌肉的行为。天然肌肉无可挑剔地能够感测,作用和计算。具有先进和更高性能的生物医学和机器人应用所必需的人造肌肉的复制品。在这一发展中,大多数人造肌肉在一个或另一个方面都面临着局限性,因此主要未能与哺乳动物的肌肉竞争。这导致了进一步的好奇心,并且最近在人工肌肉领域加速了研究。最近,Haines等。引入了更好的替代品,用于具有更好性能的昂贵现有人造肌肉。我们将在后面的一节中解释这些新型肌肉的制造过程。肌肉是通过扭曲和盘绕和一些热处理制成的,因此我们称它们为扭曲和盘绕的聚合物(TCP)肌肉(Haines等,2014a)。这些肌肉具有较大的菌株(B 50%),高功率与重量比可与喷气发动机(5.26 kW)相当,并且可以举起比人肌肉大100倍的负载。