国家可再生能源实验室和通用电气(GE)是添加剂和模块化的转子叶片和集成复合材料组装(AmeriCA)项目中的合作伙伴。美国旨在开发先进的制造解决方案,以减少劳动力和周期时间,同时增加风力涡轮机叶片的可回收性。该项目由美国能源部的高级制造业官员资助。本文介绍了新型制造过程的技术经济和生命周期分析,该过程应用于代表性3.4 MW陆基风力涡轮机的刀片的15米长尖端。我们与标准制造过程进行了比较,强调了挑战和机遇。几个不确定性影响分析,但我们强调了一个机会空间。使用了一套假设,采用高级制造的小费将降低21%,周期时间降低39%,总叶片提示成本降低15%,同时提高生产质量并采用可回收的热塑性树脂。生命周期分析将返回两个过程之间的气候变化影响和体现能量的可比指标。
涡轮叶片运行过程中最常见的缺陷之一是叶尖磨损,这会导致叶片报废。增材制造 (AM) 可以通过激光材料沉积 (LMD,也称为直接能量沉积,DED) 工艺进行修复,从而避免成本高昂的整个叶片更换。由于该应用与工业相关,因此关于 LMD 工艺所用的确切沉积策略和工艺参数的信息非常有限。本研究中使用的叶片几何形状的特点是轮廓横截面在叶片高度上的变化。此外,轮廓围绕其骨架线中心旋转,这称为扭曲。此外,轮廓沿其肌腱线向前缘移动,这称为前扫。首先,确定一组合适的工艺参数,通过这些参数可以制造无孔隙和无裂纹的 IN718 基本探头。为了将这些参数转移到涡轮叶片上,研究了各种工艺策略,这些策略既考虑了敏感的叶片几何形状,也考虑了所用生产系统的运动学。这些策略包括轮廓和舱口轨道的调整、合适的飞入和飞出策略的设计,以及悬垂生产的措施。通过将修复后的叶片与其目标几何形状与光学测量进行比较,可以评估工艺后的形状精度。总之,所用的三维构建策略能够稳定地再现扭曲和前掠,并实现足够的加工余量。因此,所开发的工艺代表了复杂叶片几何形状的叶尖损伤近净形修复的基本解决方案,可应用于其他叶片几何形状。
涡轮叶片运行过程中最常见的缺陷之一是叶尖磨损,这会导致叶片报废。增材制造 (AM) 可以通过激光材料沉积 (LMD,也称为直接能量沉积,DED) 工艺进行修复,从而避免成本高昂的整个叶片更换。由于该应用与工业相关,因此关于 LMD 工艺所用的确切沉积策略和工艺参数的信息非常有限。本研究中使用的叶片几何形状的特点是轮廓横截面在叶片高度上的变化。此外,轮廓围绕其骨架线中心旋转,这称为扭曲。此外,轮廓沿其肌腱线向前缘移动,这称为前扫。首先,确定一组合适的工艺参数,通过这些参数可以制造无孔隙和无裂纹的 IN718 基本探头。为了将这些参数转移到涡轮叶片上,研究了各种工艺策略,这些策略既考虑了敏感的叶片几何形状,也考虑了所用生产系统的运动学。这些策略包括轮廓和舱口轨道的调整、合适的飞入和飞出策略的设计,以及悬垂生产的措施。通过将修复后的叶片与其目标几何形状与光学测量进行比较,可以评估工艺后的形状精度。总之,所用的三维构建策略能够稳定地再现扭曲和前掠,并实现足够的加工余量。因此,所开发的工艺代表了复杂叶片几何形状的叶尖损伤近净形修复的基本解决方案,可应用于其他叶片几何形状。
有限元分析(FEA)通常用于模拟在各种操作条件下涡轮叶片的结构行为,有助于改善材料的选择和设计。计算流体动力学(CFD)对于研究涡轮叶片上蒸汽流动的空气动力学很重要,从而使设计人员可以改善叶片曲线以获得最佳的能量转换。基于计算机模型的3D打印技术可实现涡轮叶片的快速原型制作,并可以进行迭代设计改进。计算器有助于预测水分和污染物等环境因素对涡轮叶片性能和耐用性的影响。共同通过提供洞察力,优化性能和加速创新过程,彻底改变了蒸汽涡轮叶片开发的整个生命周期。
本报告是作为美国政府机构赞助的工作的说明而编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
本报告是作为美国政府机构赞助的工作的记录而编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文中以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文中表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
摘要:可再生能源市场,尤其是风能,经历了显着的增长,主要是面对加速全球变暖的迫切需要脱碳的驱动。随着风能部门的扩展,涡轮机的尺寸增加,对高度强度和低密度的高级复合材料的需求不断增长。在这些材料中,石墨烯具有出色的机械性能和低密度。将石墨烯加固纳入风力涡轮机叶片有可能提高发电效率并降低基础结构的建设成本。作为对风力涡轮机叶片上石墨烯加固的试点研究,该研究旨在研究传统的基于玻璃纤维的叶片与用石墨烯血小板(GPLS)增强的机械特性和权重的变化。通过将分析结果与现有文献中介绍的结果进行比较,使用并验证了SNL 61.5 M水平风力涡轮刀片的有限元模型。案例研究是为了探索石墨烯加固对机械特性(例如自由振动,弯曲和扭转变形)的影响。此外,在玻璃纤维,CNTRC和基于GPLRC的风力涡轮机叶片中比较了质量和制造成本。最后,从这项研究中获得的结果证明了石墨烯加固对风力涡轮机叶片的有效性,从其机械性能和重量减轻方面。
在过去的几十年中,风能发展迅速,目前是最有前途和经济可行的能源之一[2]。欧盟委员会的《2050 年能源路线图》指出,将增加对可再生能源技术的投资。预计到 2050 年,风力发电将比任何其他可再生能源技术提供更多的电力[3]。风力涡轮机主要可分为两大类:水平轴风力涡轮机 (HAWT) 和垂直轴风力涡轮机 (VAWT)。VAWT 类型似乎比 HAWT 更古老 [4],但在风能行业,HAWT 类型更受欢迎,主要是因为产生的能量更多 [5]。随着人们对风能的兴趣日益高涨,VAWT 被认为是浮动海上风力涡轮机概念 [6] 和家庭用电中 HAWT 的潜在替代品。随着两种主要涡轮机类型 Darrieus 和 Savonius 垂直涡轮机的发明[4],人们对 VAWT 的兴趣日益增加。图 1 展示了 Darrieus 和 Savonius 风力涡轮机以及 Darrieus 涡轮机的一个特殊情况——H Darrieus 转子。