Boronia boliviensis(Bolivia Hill Boronia)是一种传统上接受的物种(Chah 2008)(Chah 2008),北谷(Valvatae)系列Erianthae(Duretto and Ladiges 1999)。威廉姆斯和亨特(Williams and Hunter,2006年)将其描述为“截至1.5(–2.2)M高的灌木,高,有气味的枝; brandlet子,覆盖着非常短的,连续的,多角质的黄色星状头发,随着年龄的增长而变得无毛。叶子大部分是7-11个传单,很少有一些叶子上有1-5个传单(尤其是在开花的树枝上); Rachis 2–12(–20)毫米长,连接,宽8-15毫米,翅膀狭窄,Rachis Wings平坦或弯曲; leaflets narrow-elliptic, sessile, 3.8–9 mm long, 0.5– 1.5 mm wide, apex acute to sub-obtuse, broadest above the middle, margins entire and closely revolute, rarely only recurved, upper surface deep green with a sparse indumentum of stellate hairs or ± glabrous, the surface and margin dotted with large, sunken oil glands, lower surface often hidden by revolute边缘,但明显苍白时,通常无毛;叶柄长1-3毫米。花序腋窝,1-3朵花; prophylls unigriate;花梗1.5–2毫米长;花梗长2-3毫米。花萼裂片深红色,窄叶,急性或渐尖,长2.5-3.8毫米,宽1-2毫米,不久的是毛茸茸的毛茸茸。花瓣粉红色,长4-9毫米,宽3–4毫米,芽瓣,芽中的瓣膜,很快是静态的,无毛,或几乎是精美的简单头发
当前研究的目的是解决两个重大的环境清理问题。第一个涉及回收用过的锂离子电池(LIB),第二个涉及在水中发现的抗生素的降解。可以从也已与硼(BRGO)掺杂的用过的Libs合成还原的氧化石墨烯(RGO)。当BRGO和可见的活性BI 2 WO 6(BWO)混合在一起时,形成纳米复合材料(BWO/BR)。结构,形态和光谱特征证实了BRGO,BWO和BWO/BR纳米复合材料的序列。抗生素四环素盐酸(TCH)和环丙沙星(CIP)已通过所有三种新制成的材料进行了测试,以进行光催化降解。与BRGO结合后,发现将BWO(2.73 eV)的带隙降低至2.22 eV。在可见光下,BWO/BR表现出升高的TCH降解(93%),发现在存在阳光下会增加(95%)。在存在BWO/BR的情况下,据报道,CIP的降解分别为72%,95%和97.5%,在紫外线,可见和阳光下分别为。在存在BWO/BR的情况下,检查了反应条件,例如pH,催化剂和初始浓度的量,以降解TCH和CIP。已经发现,pH 6和8分别是TCH和CIP的理想选择。还进行了药物废水中TCH和CIP降解的研究;在存在BWO/BR和可见光的情况下,降解效率分别确定为69%和72%。在暴露于可见光之前和之后,在90分钟之前和之后,检查了在存在BWO/BR的情况下检查所有大肠杆菌,单核细胞增生菌,伤寒链球菌和金黄色葡萄球菌的所有抑制区域,在此期间,观察到接近零的抑制区域。进行了使用液相色谱 - 质谱法(LC-MS)进行研究以鉴定TCH和CIP降解的中间产物。
壳聚糖(CS)已广泛探索一种天然可生物降解的聚合物,以用于多种药物和生物医学应用。cs源自几丁质聚(N-乙酰葡萄糖胺),该聚集蛋白通过碱性脱乙酰化从甲壳类动物的壳中分离出来。CS包含葡萄糖胺和N-乙酰葡萄糖单元,通过(1-4)糖苷链路连接在一起[1]。CS的结构为化学修饰提供了多种选择,这可能会导致具有独特特性的广泛衍生物。CS链上有三个反应性位点实现化学修饰:一个原代胺和两个羟基(原发性或次要)(图。1)。主要的胺组呈现出适用于药物应用的CS的特殊特性。CS的阳离子特征有助于
摘要 硼酸/酯因其优异的亲氧性、低毒性和独特结构而最近出现在医学和制药研究领域。它们被称为有效的酶抑制剂、癌症治疗捕获剂,并能模仿某些类型的抗体来对抗感染。它们已被设计和开发成药物,这种方法是在过去 20 年中出现的。美国食品药品监督管理局和加拿大卫生部已批准五种硼酸药物,其中两种用于治疗癌症,特别是多发性骨髓瘤。本综述的目的是研究硼酸/酯衍生物作为潜在的药物及其作用机制。它将集中在六种类型的癌症上:多发性骨髓瘤、前列腺癌、乳腺癌、肺癌、宫颈癌和结肠癌。一些新开发的含硼化合物已经表现出非常有希望的活性,但在得出最终结论之前还需要进一步研究。
5 帕多瓦大学化学科学系,Via Marzolo 1, 35131 帕多瓦,意大利 * 通讯作者:plinio@uniss.it 关键词:六方氮化硼,二维材料,光致发光 摘要 基于六方氮化硼纳米片(h-BNN)的功能光电应用的开发依赖于控制结构缺陷。特别是,已经观察到荧光发射取决于空位和取代缺陷。在目前的研究中,通过超声辅助液相剥离块体对应物获得了少层 h-BNN。制备的样品在可见光范围内表现出微弱的荧光发射,中心在 400nm 左右。通过在不同温度下在空气中氧化引入了定制缺陷。已经观察到氧化 h-BNN 的荧光发射显著增加,在 300°C 下处理的样品的发射强度最大。温度进一步升高(>300°C)会导致荧光猝灭。
量子发射器需要多种从量子传感到量子计算的应用。六角硼硝酸盐(HBN)量子发射器是迄今为止最有价值的固态平台之一,由于其高亮度,稳定性和自旋光子界面的可能性。但是,对单光子发射器(SPE)的物理起源的理解仍然有限。在这里,我们在整个可见频谱中观察到HBN中的密集SPE,并提供了混凝土和结论性的证据,表明这些SPE中的大多数可以通过供体受体对(DAPS)很好地解释。基于DAP过渡生成机制,我们计算了它们的波长指纹,与实验观察到的光致发光光谱非常匹配。我们的工作是对HBN中SPE的物理理解及其在量子技术中的应用。
对于高相干性固态量子计算平台来说,微波频率下低损耗的电介质是必不可少的。在这里,我们通过测量集成到超导电路中的由 NbSe 2 –hBN–NbSe 2 异质结构制成的平行板电容器 (PPC) 的品质因数,研究了六方氮化硼 (hBN) 薄膜在微波范围内的介电损耗。在低温单光子范围内,提取的 hBN 微波损耗角正切最多在 10 −6 中间范围内。我们将 hBN PPC 与铝约瑟夫森结集成,以实现相干时间达到 25 μs 的传输量子比特,这与从谐振器测量推断出的 hBN 损耗角正切一致。与传统的全铝共面传输相比,hBN PPC 将量子比特特征尺寸缩小了约两个数量级。我们的研究结果表明,hBN 是一种很有前途的电介质,可用于构建高相干量子电路,它占用空间大大减少,能量参与度高,有助于减少不必要的量子比特串扰。广义的超导量子比特包括由电感和电容元件分流的约瑟夫森结,它们共同决定了它的能谱 1 。虽然理想情况下,组成超导量子比特的材料应该是无耗散的,但量子比特退相干的主要因素是量子比特的电磁场与有损体积和界面电介质的相互作用 2 。在典型的超导电路中,介电损耗可能发生在约瑟夫森结的隧穿势垒中,以及覆盖设备的许多金属和基底界面的原生氧化层中 3、4 。这些电介质通常是具有结构缺陷的非晶态氧化物,可以建模为杂散两能级系统 (TLS)。虽然这些 TLS 的微观性质仍有待完全了解,但已确定 TLS 集合与超导量子电路中的电磁场之间的相互作用限制了量子比特的相干性和超导谐振器的品质因数。人们还怀疑 TLS 可能存在于设备制造过程中留下的化学残留物的界面处 4、5。
摘要 日本政府已批准硼中子俘获疗法 (BNCT) 用于治疗无法切除的、局部晚期和复发性头颈部癌,自 2020 年 6 月起可在国家健康保险报销。住友重工业株式会社 (Sumitomo) 开发了一种用于临床 BNCT 的新型治疗计划系统 NeuCure® Dose Engine。为了将该系统安全地用于临床,将水模内的模拟中子通量和伽马射线剂量率与实验测量值进行了比较。此外,为了验证和确认新的计划系统,将拟人头部模型内的剂量分布与 BNCT 治疗计划系统 SERA 和内部开发的蒙特卡罗剂量计算程序进行了比较。模拟结果与实验结果非常吻合,热中子通量在 5% 以内,伽马射线剂量率在 10% 以内。头部模型内的剂量分布与 SERA 和内部开发的剂量计算程序非常接近,肿瘤的剂量分布在 3% 以内,脑部的剂量分布在 0.3 Gy w 以内。关键词:硼中子俘获治疗,治疗计划系统,调试,蒙特卡罗模拟
我们报告了通过连续硼(b)粉末注射启用的实验高级超导tokamak(EAST)中对边缘区域模式(ELMS)的强烈抑制。边缘谐波振荡在B粉末注入过程中出现,提供足够的颗粒传输以保持恒定密度并避免在ELM稳定的等离子体中积累杂质。准稳态的ELM抑制放电以适度的能量限制改善和在广泛的条件下:加热能力和技术变化,〜3.5元素的电子密度范围,氘或氦离子物种,以及带圆环磁场的任何方向。ELM抑制在阈值边缘B强度以上,并在B注射终止的0.5 s内停止。与ELM抑制作用相反,伴随着NSTX和EAST的LI粉末注射期间的回收减少[R. Maingi等人,Nucl。融合58(2018)024003],由于保留氢而导致的回收减少是不需要用B粉注射的ELM抑制的,为将其作为未来融合设备的ELM控制工具铺平了道路。关键字