缩写 术语 As 砷 Ba 钡 BBzP 邻苯二甲酸丁苄酯 BMI 体重指数 BPA 双酚 A BPB 双酚 B BPF 双酚 F BPAF 双酚 AF BPAP 双酚 AP BPP 双酚 P BPS 双酚 S BPZ 双酚 Z BuP 对羟基苯甲酸丁酯 BzP 对羟基苯甲酸苄酯 Ca 钙 Cd 镉 CDC 疾病控制和预防中心 CI 置信区间 CMC 羧甲基纤维素 Co 钴 Cr 铬 CRP C 反应蛋白 Cu 铜 DBP 邻苯二甲酸二丁酯 DCHP 邻苯二甲酸二环己酯 DEP 邻苯二甲酸二乙酯 DEHP 邻苯二甲酸二(2-乙基己基)酯 DIBP 邻苯二甲酸二异丁酯 DMP 邻苯二甲酸二甲酯 DNHP 邻苯二甲酸二正己酯 DOP 邻苯二甲酸二正辛酯 EDCs 内分泌干扰化学物质 EI 电子电离 EtP 对羟基苯甲酸乙酯 EU 欧洲 FDA 美国食品药品管理局 Fe 铁 FHP 女性卫生用品 GM 几何平均数 GSD 几何标准差 HeP 对羟基苯甲酸庚酯 HIV 人类免疫缺陷病毒 Hg 汞
摘要:在寻找靶向多巴胺D 3受体(D 3 R)的新型比特化合物中,N-(2,3-二氯苯基)替代嗪核(主要药物矩阵)已与6,6-或5,5-二苯基-1,4-苯基-1,4--二烷基-2-二甲酰基-2-甲酰基或1,4-碳二 - 4-碳二 - 4-碳二 - 4-碳二 - 4-4-二 - 4-4-4-二 - 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-架(分解药理)通过未取代或3-F/3-OH取代的丁基链。这种旧的杂交策略导致发现有效的D 3 r-选择性或多坐菌配体可能对中枢神经系统疾病有用。,6,6-二苯基-1,4-二氧烷衍生物3显示了D 3 r-优先效果,而对于5,5-二苯基-1,4-二恶烷和1,4-苯并二氧烷衍生物6和9的5,5-二苯基-1,4-二氧烷和9和9的有趣的多白素行为已突出显示,该行为分别显示为6和9有效的D 3 R部分激动剂。他们还表现为低功率5-HT 2A R拮抗剂和5-HT 2C R部分激动剂。这样的验证可能是发现新型抗精神病药物的一个有希望的起点。关键词:多巴胺D 3受体,比特型配体,多坐Multitarget化合物,中枢神经系统疾病,停靠研究■简介
到目前为止,已经探索了许多无金属TADF分子,以高效率为蓝色,绿色和红色的电脑(EL),其最大外部量子效率(EQE MAX)分别超过38%,11 37%12和27%,分别为13。尽管出现了出色的EQE值,但由于较高的能量水平和更长的兴奋状态寿命,蓝色OLED往往显示出比绿色和红色的稳定性差得多。14,15尽管设备寿命是进一步商业化OLED的关键参数,但在各种文献研究中通常不会收集或提及。16要解决蓝色TADF OLED的固有不稳定,替代策略已被广泛使用并被证明是最有效的方法之一。duan和同事通过将TERT - 丁基取代基作为空间盾牌引入了有效和稳定的蓝色TADF发射器,这不仅提高了光致发光的效率,而且还提高了TADF分子的稳定性。17因此,在
微泡 (MB) 广泛用于超声 (US) 成像和药物输送。由于表面张力,MB 通常呈球形。当加热到玻璃化转变温度以上时,聚合物基 MB 可以机械拉伸以获得各向异性形状,从而赋予它们独特的超声介导血脑屏障 (BBB) 渗透特性。本文显示,非球形 MB 可以用 BBB 特异性靶向配体进行表面改性,从而促进与脑血管的结合和声波渗透。主动靶向的棒状 MB 是通过对球形聚(丁基氰基丙烯酸酯)MB 进行 1D 拉伸,然后用抗转铁蛋白受体 (TfR) 抗体对其外壳进行功能化而生成的。使用超声和光学成像证明,无论是在体外还是体内,非球形抗 TfR-MB 都能比球形抗 TfR-MB 更有效地与 BBB 内皮结合。与 BBB 靶向球形 MB 相比,与 BBB 相关的各向异性 MB 产生更强的空化信号,并显著增强 BBB 渗透和模型药物的输送。这些发现证明了抗体修饰的非球形 MB 具有向大脑靶向和触发药物输送的潜力。
a. 除非另有规定,本文规定的要求适用于所有任务环境中的安装操作(见 6.5)。 b. 除非另有规定,本文规定的要求适用于 H-72 系列和 H-60 系列(医疗后送(见 6.5)和通用)以及 H-47 系列(货运)飞机。 c. 除非另有规定,本文规定的要求适用于佩戴飞行员手套(见图纸 1050702)和中度寒冷天气手套 HAU-15P(见图纸 1050702)的机组成员,并且对于 MOPP 配置,飞行员手套戴在 7 mil 丁基橡胶手套和手套内衬上(见图纸 1050882),以便用一只手灵活地取用设备。 d. 除非指定为目标 [O](见 6.5),否则本文中包含的所有要求均应为阈值 [T](见 6.5)要求。 e.除非另有规定,本文规定的要求应适用于体重和身材在 Natick/TR-15/007 [T] 中定义的陆军航空兵人口中女性第 5 个百分点至男性第 95 个百分点的机组成员;女性第 1 个百分点至男性第 99 个百分点 [O]。
[4-(3,6-二甲基-9H-咔唑-9基)丁基]膦酸 (Me-4PACz) 自组装分子 (SAM) 是解决倒置钙钛矿太阳能电池 (PSC) 中 NiO x 埋层界面问题的有效方法。但 Me-4PACz 端基 (咔唑核心) 不能强制钝化钙钛矿薄膜底部的缺陷。这里采用 Co-SAM 策略来修改 PSC 的埋层界面。Me-4PACz 掺杂氯化磷酰胆碱 (PC) 形成 Co-SAM 以提高单层覆盖率并降低漏电流。PC 中的磷酸基和氯离子 (Cl − ) 可以抑制 NiO x 表面缺陷。同时,PC 中的季铵离子和 Cl − 可以填充钙钛矿薄膜中的有机阳离子和卤素空位,使缺陷钝化。此外,Co-SAM 可以促进钙钛矿晶体的生长,协同解决埋藏缺陷问题,抑制非辐射复合,加速载流子传输,并减轻钙钛矿薄膜的残余应力。因此,Co-SAM 修饰的器件表现出高达 25.09% 的功率转换效率以及出色的器件稳定性,在单太阳照射下运行 1000 小时后,初始效率仍为 93%。这项工作展示了通过修饰 NiO x 上的 Co-SAM 来提高 PSC 性能和稳定性的新方法。
据我们所知,我们在此确认,镉 (Cd)、铅 (Pb)、汞 (Hg)、六价铬 [Cr(VI)]、多溴联苯 (PBB)、多溴二苯醚 (PBDE)、邻苯二甲酸二(2-乙基己基)酯 (DEHP)、邻苯二甲酸丁苄酯 (BBP)、邻苯二甲酸二丁酯 (DBP) 和邻苯二甲酸二异丁酯 (DIBP) 等物质受以下指令的管制: - 欧洲议会和理事会 2011 年 6 月 8 日颁布的关于限制在电气和电子设备中使用某些危险物质 (RoHS) 的 2011/65/EU 指令,以及委员会授权指令 (EU) 2024/1416 的修订版; - 欧洲议会和理事会 2000 年 9 月 18 日颁布的关于报废汽车的 2000/53/EC 指令附件 II ( ELV )经委员会指令 2023/544 修订,- 中国法规 - 第 32 号命令,《电气电子产品有害物质限制使用管理方法》,于 2016 年 1 月 21 日发布,在原材料生产过程中或上述三菱化学先进材料库存形状制造过程中均未有意引入 1 。由于无法合理预期上述物质的存在,三菱化学先进材料不会通过测试系统地检查其库存形状中是否存在上述物质。
摘要:硅阳极需要机械强度高且电化学稳定的聚合物粘合剂体系,以适应循环操作过程中经历的剧烈体积膨胀。在此,我们报告使用聚(丙烯酸)接枝苯乙烯-丁二烯橡胶(PAA- g- SBR)和 80% 部分中和的 Na-PAA 作为硅石墨阳极的粘合剂体系。PAA- g -SBR 接枝共聚物是通过将丙烯酸叔丁酯接枝到 SBR 上并用 H 3 PO 4 处理中间体合成的。发现 PAA- g -SBR/Na-PAA 粘合剂体系比 Na-PAA/SBR 体系具有更好的电化学性能。Na-PAA/PAA- g -SBR 体系在 130 次循环中具有稳定的 673 mAh g -1 容量保持率,而 Na-PAA/SBR 体系的容量保持率立即下降。 Na-PAA/PAA- g -SBR 体系还表现出更好的机械性能,与 Na-PAA/SBR 体系相比,杨氏模量值更低,失效应变更大。总体而言,这些发现表明,在下一代锂离子电池中,硅阳极应用是一种有前途且坚固的聚合物粘合剂体系。关键词:锂离子电池、硅电极、PAA-g-SBR 聚合物、丙烯酸叔丁酯、交流阻抗、电极粘附、储能应用■ 介绍
木质素是产生生物质芳香族化合物的最有前途的候选者。然而,挑战在于在轻度条件下木质素单体之间的C键裂解,因为这些键具有高解离能。电化学氧化允许轻度切割C -C键,被认为是一种有吸引力的解决方案。为了在木质素的价值中实现低能消耗,使用高效的电催化剂是必不可少的。在这项研究中,开发了一种精心设计的催化剂,该催化剂由掺杂二氧化镍(Oxy)氢氧化物的钼二硫化物异质结的精心化催化剂。在高价状态下钼的存在促进了丁基氢过氧化物的吸附,从而导致临界自由基中间体的形成。此外,掺杂掺杂的掺杂掺入镍的电子结构,从而导致较低的能屏障。结果,异质结催化剂在木质素模型化合物中裂解Cα -Cβ键的选择性为85.36%,在环境条件下达到了93.69%的底物转换。此外,电催化剂解聚了有机溶质木质素(OL)的49.82 wt%的可溶性级分,导致高达13 wt%的芳族单体的产率。很明显,还使用工业牛皮纸木质素(KL)证明了制备的电催化剂的有效性。因此,这项研究提供了一种实施木质素精炼中电催化氧化的实用方法。
测试项目 单位 MDL A10 镉 (Cd) mg/kg 2 ND 铅 (Pb) mg/kg 2 10 汞 (Hg) mg/kg 2 ND 六价铬 (Cr(VI)) mg/kg 8 ND 多溴联苯 (PBBs) mg/kg - ND 一溴联苯 (MonoBB) mg/kg 5 ND 二溴联苯 (DiBB) mg/kg 5 ND 三溴联苯 (TriBB) mg/kg 5 ND 四溴联苯 (TetraBB) mg/kg 5 ND 五溴联苯 (PentaBB) mg/kg 5 ND 六溴联苯 (HexaBB) mg/kg 5 ND 七溴联苯 (HeptaBB) mg/kg 5 ND 八溴联苯 (OctaBB) mg/kg 5 ND 九溴联苯十溴联苯 (DecaBB) mg/kg 5 ND 多溴二苯醚 (PBDEs) mg/kg - ND 一溴二苯醚 (MonoBDE) mg/kg 5 ND 二溴二苯醚 (DiBDE) mg/kg 5 ND 三溴二苯醚 (TriBDE) mg/kg 5 ND 四溴二苯醚 (TetraBDE) mg/kg 5 ND 五溴二苯醚 (PentaBDE) mg/kg 5 ND 六溴二苯醚 (HexaBDE) mg/kg 5 ND 七溴二苯醚 (HeptaBDE) mg/kg 5 ND 八溴二苯醚 (OctaBDE) mg/kg 5 ND 九溴二苯醚 (NonaBDE) mg/kg 5 ND 十溴二苯醚 (DecaBDE) mg/kg 5 ND 邻苯二甲酸二丁酯(DBP) mg/kg 50 ND 邻苯二甲酸丁苄酯(BBP) mg/kg 50 ND 邻苯二甲酸双(2-乙基己基)酯(DEHP) mg/kg 50 ND