想象一下,如果有一种摄像头可以减轻人工监控交通的负担,它可以检测、准确读取车牌、测量速度以优化交通流量。Milesight 提供的 LPR 摄像头不仅能读取车牌,还能识别车辆类型、车辆颜色、车牌颜色等,并嵌入了 AI 支持的 LPR 算法,以实现更高级的使用。此外,Milesight LPR 摄像头还与其他尖端技术(如 3D 雷达、补光灯、PTZ)集成,以显著扩展其核心功能。凭借令人惊叹的强大功能,Milesight LPR 摄像头非常适合高要求的道路交通监控情况。
Axis Edge Vault是基于硬件的网络安全平台,可保护轴心设备。它构成了所有安全操作取决于并提供保护设备身份,保护其完整性并保护敏感信息免受未经授权访问的功能的基础。例如,Secure Boot确保设备只能使用签名的OS启动,从而防止物理供应链TAMPERING。使用签名的OS,该设备还可以在接受安装之前验证新设备软件。和安全的密钥库是用于保护安全通信的加密信息的关键建筑块(IEEE 802.1X,https,axis设备ID,访问控制键等)如果违反了恶意提取。通过常见的标准或FIPS 140认证的基于硬件的加密计算模块提供安全的密钥库和安全连接。
Axis Edge Vault是基于硬件的网络安全平台,可保护轴心设备。它构成了所有安全操作取决于并提供保护设备身份,保护其完整性并保护敏感信息免受未经授权访问的功能的基础。例如,Secure Boot确保设备只能使用签名的OS启动,从而防止物理供应链TAMPERING。使用签名的OS,该设备还可以在接受安装之前验证新设备软件。和安全的密钥库是用于保护安全通信的加密信息的关键建筑块(IEEE 802.1X,https,axis设备ID,访问控制键等)如果违反了恶意提取。通过常见的标准或FIPS 140认证的基于硬件的加密计算模块提供安全的密钥库和安全连接。
简介 过去十年来,美国的行人死亡人数不断飙升。行人死亡人数增加了 46%,从 2010 年的 4,302 人增加到 2019 年的估计 6,301 人。夜间行人死亡人数增加了 54%,而同期白天行人死亡人数仅增加了 16%。在这些致命事故中,约 75% 发生在天黑后。此外,美国汽车协会 (AAA) 的一项研究测试了当前车辆中的行人检测,发现所评估的行人检测系统——由雷达(无线电检测和测距)、图像传感器(摄像头)、激光雷达(光检测和测距)和超声波声纳组成——在夜间条件下无效。该项目的目标是通过结合从三个独立传感器实时获取的数据并使用机器学习算法在夜间检测行人,以减少夜间行人死亡人数
AI赋能关键ISP模块,如HDR、3DNR、RLTM(实时低延迟监控)、去马赛克等通过AI训练不断提升这些模块性能,突破传统ISP成像的“天花板”。
1 准备 ................................................................................................................................................ 2 2 通过 ONVIF 协议搜索摄像机 ...................................................................................................... 3 2.1 注意事项 ................................................................................................................................ 3 2.2 步骤 ................................................................................................................................ 3 3 通过 Bonjour (mDNS) 服务搜索摄像机 ...................................................................................... 4 3.1 注意事项 ................................................................................................................................ 4 3.2 步骤 ................................................................................................................................ 4 4 通过 HTTPs 协议(网页浏览器)访问摄像机 ............................................................................. 5 4.1 注意事项 ................................................................................................................................ 5 4.2 步骤 ................................................................................................................................ 5 5 通过 RTSP 协议从摄像机获取实时流媒体 ............................................................................. 6 5.1 注意事项 ................................................................................................................................ 6 5.2 步骤 ................................................................................................................................ 6 6 如果无法搜索到 AI-Vue 摄像机,如何进行故障排除?...................................... 7 6.1 摄像机未开机 ...................................................................................................... 7 6.2 网络设置不正确 ...................................................................................................... 7 6.3 网络防火墙问题 ...................................................................................................... 7
相机的主要部件是两个可互换胶卷盒、相机机身和接线盒以及相机控制面板。相机设计为提供 120° 的摄影扫描角度。12 英寸、f/3.8 高敏锐度镜头可在 25.2 英寸长、4.5 英寸宽的 5 英寸穿孔胶卷上拍摄照片。胶卷盒的胶卷容量为 2,000 英尺,可曝光约 900 帧。相机以自动循环模式运行,这意味着相机以循环速率连续运行,以允许拍摄地面带照片,确保完全覆盖地面并具有适当的重叠。这是通过速度伺服系统实现的,该系统根据飞机速度和高度以称为 V/H 的关系循环摄像机。此 V/H 命令可以自动执行
在使用 GPS/IMU 进行直接地理参考测绘模式或甚至使用空中三角测量测绘时,相机/IMU 视轴校准是测绘过程中的关键要素。一些研究人员证明了需要最佳的视轴校准过程、程序和软件工具。因此,本文重点介绍使用 Applanix Corporation 新发布的 POSCal TM 软件在视轴校准领域的最新发展。首先,简要讨论以描述性方式总结软件功能。然后,简要介绍了软件中实现的多种分析工具,这些工具是进行 GPS、IMU、图像、地面控制和基准问题的质量保证和质量控制所必需的。已经进行了一项分析研究来测试该软件的分析工具。这项研究使用了加利福尼亚州奥克兰的 HJW GeoSpatial Inc 和欧洲实验摄影测量研究组织 (OEEPE) 的试点中心(汉诺威大学)收集的真实数据集。所有数据集均由配备 6 英寸镜头锥体的 9 英寸 x 9 英寸胶片相机和 Applanix POS/AV TM 510 系统采集。此外,所有数据集都具有良好的地面控制点数量、分布和准确性、高质量的图像测量值以及良好的 GPS 和 IMU 数据。这使得我们可以从高质量的数据集开始,其中故意引入偏差和噪声进行分析 p