9. 将电池保持在 -40 ℃ 下 16 小时,然后测量电容和 ESR。将温度升高 10 ℃ ,保持数小时,然后测量电容和 ESR。以 10 ℃ 的间隔继续相同过程,直到温度达到 65 ℃ 。
本文介绍了一种 2 级控制器,用于管理混合储能解决方案 (HESS),用于光伏 (PV) 电厂在配电网中的电网整合。HESS 基于通过模块化电力电子柜将铅酸电池组和超级电容器组互连。将 HESS 纳入光伏电厂(而不是基于单一技术的最先进的储能系统)的动机是提供电网峰值功率削减和光伏输出功率斜坡限制服务的技术要求多种多样。2 级控制器确保协同利用两种存储技术,旨在实现 HESS 的最佳服务水平和最小的电池退化。控制器的较高级别基于数学优化问题,该问题通过存储技术的最佳调度来解决峰值功率削减目的。然后,此优化的功率设定点由管理光伏电厂输出斜坡限制的实时控制器补充。通过两个案例研究证明了 HESS 性能和相关控制器的有效性。第一篇采用 6.6 MW 光伏电站,包括 HESS 解决方案,该解决方案结合了 5.5 MWh 和 2.64 MW 铅酸电池组与 0.25 MWh 和 1.32 MW 超级电容器组。第二篇报告了类似场景的实验数据,该场景缩小到 kW 级别,并使用 HESS 的实验室规模原型。总而言之,本文提出的硬件和软件解决方案有助于实现多用途储能的可行利用,以满足可再生能源和配电系统运营商的需求。
由于其高功率密度、环境友好、卓越的充放电能力、长循环寿命和安全性,纳米材料成为最有希望的储能候选材料之一。[4,5] 将纳米材料加工成具有高电导率和良好机械稳定性的独立薄膜对超级电容器具有重要意义。要为高性能超级电容器选择合适的纳米材料,必须考虑卓越的表面特性、固有的高强度和电导率。[6,7] 在寻找能够提供所有这些特性的替代品的过程中,最近发现的二维材料 MXene 显示出巨大的潜力。MXenes 是二维家族中的一种新型候选材料(MXenes 描述为 M n + 1 X n T x ,其中 M、X 和 T x 通常代表早期过渡金属、C 或 N,以及吸附的表面功能团如 OH、 O 和 F,其中 n = 1、2 或 3)。 [8] 2D 过渡金属碳化物和氮化物 MXene(包括 Ti3C2Tx、Mo2CTx 和 V4C3Tx)具有高金属电导率、优异的循环稳定性和丰富的表面化学基团,是超级电容器的优良电极材料。[9] 通过真空辅助过滤制备 MXene 独立膜是实现这些特性的最佳选择。[10] 例如,卷曲的 Ti3C2Tx 薄膜表现出 150 000 S m−1 的高电导率和重量电容
Liming Qin 1 , Guiyan Yang 1 , Dan Li 1 , Kangtai Ou 1 , Hengyu Zheng 1 , Qiang Fu 2 , Youyi Sun 1*
作为候选材料,最近已经开发出采用真空沉积法在柔性基底上制造的电池;然而,使用昂贵的阴极材料、基于物理气相沉积的电解质以及面积有限的制造工艺使装置结构庞大且过于复杂。[9–11] 厚基底会导致有限的灵活性(大弯曲半径)、降低的长期循环性能和高工艺成本,这与皮肤兼容电子产品的要求相矛盾。[6] 由于这些缺点,迫切需要低成本、大面积、高产量的印刷微型超级电容器(μ SC)。这导致了薄的平面装置的发展,它提供高功率密度(快速充电,以秒为单位)和循环能力(超过 10 000 次循环),具有易于制造和可扩展、直接的溶液处理方法的优点。[12,13] 使用不同的印刷方法,由各种碳同素异形体、导电聚合物和 Mxenes 印刷的 μ SC 被制造为电极。 [13–16] 超薄电化学储能装置采用聚酰亚胺 [17]、聚对二甲苯 C [18] 或带有载体支撑的 PET 箔 [19] 等薄基板。与无机类似物相比,导电聚合物通常被认为较差,因为其能量输送适中、化学稳定性高、循环性有限。然而,低成本印刷到柔性基板上或聚合成支架的可能性允许制造具有良好电容循环保持力的多孔电极。[20,21]
高导电性的金属有机骨架 (MOF) 已被证明是一种令人兴奋的储能设备电极材料。然而,大多数 MOF 表现出低电导率,这限制了它们在超级电容器中的使用。为了解决这个问题,采用一种简单的酸处理方法获得纳米花状镍 2- 甲基咪唑骨架 (Ni-MOF),以在不破坏其骨架的情况下提高电导率。用最佳 pH 值为 2 的硫酸 (H 2 SO 4 ) 溶液处理的样品 (Ni-MOF-2) 表现出改善的表面纹理和优异的电化学特性。Ni-MOF-2 样品在 6 M 氢氧化钾 (KOH) 水性电解质中在 1 A/g 时显示出比其他样品高的 467 C/g 的比容量 (C s )。这主要是由于酸处理后 Ni-MOF-2 中的质子传导增强。此外,还使用电池型 Ni-MOF-2 作为正极,使用富含杂原子的活性炭 (O、N、S@AC) 作为负极,制造了混合超级电容器 (HSC) 装置。制造的 HSC 的最大比容量 (C s ) 为 38 mAh/g,比能量 (E s ) 高达 39 Wh/kg,最大比功率 (P s ) 为 11,079 W/kg。此外,HSC 在 10,000 次连续恒流充电/放电 (GCD) 循环中表现出约 87% 的出色循环稳定性。
本文提出了一种基于开关电容的CMOS带隙基准源。利用开关电容,可以将两个一阶补偿基准电压组合起来,从而实现具有较低温度系数的新型基准电压。所提出的设计电路采用0.18μm CMOS工艺实现。在-40℃至120℃范围内,1.8V电源电压下基准输出电压的TC为14.5ppm/℃。所提出的基准电压为0.235V,开关电容操作引起的纹波电压为700μV。结果表明,本文描述的带隙基准源实现了比其他工作更好的TC,适用于
摘要:电导聚合物和MXENES的多功能和独家电子,光学,物理化学,电化学和机械特征都激发了全球科学家在使用这些材料设计创新的高性能存储系统方面采取严重的动力,以这些材料为机械灵活的电子技术来解决不断增长的技术技术,以解决各种材料的需求。然而,两种材料都经历了一些严重的实际限制,这使科学界以Mxenes/pani纳米复合材料的形式进行了必要的修改,并具有合适的成分,从而实质上可以恢复其代表性特征,但可以成功地抑制其功能缺陷。因此,在当前概述中,MXENES/PANI纳米复合材料制造的不同策略是为高级超级电容器制造的,特别提及合成即兴创作所带来的必要的形态修饰,从而导致了卓越的电容性,电子电荷运输以及结构性以及还认识到并进行了比较。这样的分析将有目的地有助于调整整体机械和电化学响应,以尽快对更智能和高度柔性的微电子进行策划。
摘要:本研究使用基于实际输入数据的计算机模拟来检查超级电容器模块作为可再生能源系统中的快速响应储能单元对提高能源自耗和自给自足的影响。评估的系统包括一个容量为 3.0 kWp 的光伏系统和 0 到 5 个超级电容器单元,每个模块的容量为 500 F。这项研究使用 2020 年的电力负荷、太阳辐照度和环境温度的实验数据进行,时间分辨率为 1 分钟。日平均环境温度为 10.7 ◦ C,日平均太阳辐照度为 3.1 kWh/m 2 /天。假设超级电容器只能从使用可再生能源的光伏系统充电,而不能从电网充电。模拟结果表明,使用超级电容器为电力负荷的短暂和大峰值供电可显著提高能源自耗和自给自足。仅使用五个超级电容器模块,年能源自给率就从28.09%提高到40.77%。