手性量子网络为实现量子信息处理和量子通信提供了一种有希望的途径。本文我们描述了手性量子网络中两个相距遥远的量子节点如何通过一个共同的一维手性波导中的光子传输而动态地纠缠在一起。我们利用手性耦合的单模环形谐振器中的方向不对称性来产生两个原子之间的纠缠态。我们报告的纠缠度高达 0.969,比 Gonzalez-Ballestero 等人提出并详细分析的 0.736 有了很大的改进。[Phys. Rev. B 92, 155304 (2015)]。这一显著的增强是通过引入微谐振器实现的,微谐振器可作为光和物质之间的有效光子接口。证明了我们的协议对实验缺陷的稳健性,例如节点间距离的波动、不完美的手性、各种失谐和原子自发衰变。我们的建议可用于量子网络中的长距离纠缠产生,这是量子计算和量子信息处理中许多应用的关键因素。
摘要:手性,自然的基本属性,显着影响与物理特性,化学反应,生物药理学等相关的广泛现象。作为手性研究的关键方面,手性识别有助于从简单的手性化合物中合成复杂的手性产物,并在手性材料之间表现出复杂的相互作用。但是,宏观检测技术无法揭示单分子手性识别的动态过程和内在机制。在本文中,我们提出了一个基于石墨烯 - 分子 - 原子单分子连接的单分子检测平台,以测量涉及胺和手性醇之间相互作用的手性识别。这种方法导致在单分子水平上实现原位和实时直接观察手性识别,这表明手性醇具有引人注目的潜力,以诱导分子的相应手性构型的形成。理论分析与实验发现的合并揭示了手性识别过程中静电相互作用与空间阻滞作用之间的协同作用,从而证实了管理手性结构 - 活性关系的显微镜机制。这些研究为探索化学基本限制(例如手性起源和手性放大)探索新型手性现象的途径开辟了道路,并为精确合成手性材料提供了重要的见解。■简介
对手性光的兴趣日益增加,源于其沿繁殖方向的螺旋轨迹,从而促进了光与物质的不同极化状态之间的相互作用。尽管在手性光相关研究中取得了巨大成就,但手性脉冲的产生和控制却带来了持久的挑战,尤其是在Terahertz和紫外光谱范围内,由于缺乏合适的光学元素来有效的脉冲操纵。传统上,可以通过复杂的光学系统,外部磁场或超材料获得手性光,这需要复杂的光学配置。在这里,我们提出了一个多功能的可调性手性发射极,仅由两个平面Weyl Semimetals板组成,解决了两个光谱范围内的挑战。我们的结果为Terahertz和Ultra-Violet频率范围的紧凑型可调手性发射极平台开辟了道路。这一进步具有作为综合手性光子学的基石的潜力。
介电性手性超脸是一种新型的平面和高效的手性光学设备,显示出强圆形二分法或光学活动,在光学传感和显示中具有重要的应用潜力。然而,传统手性跨面中的两种类型的手性光学反应通常是相互依存的,因为它们对正交圆形极化组件的幅度和阶段的调节是相关的,这限制了芯Riral Meta-devices的进一步进展。在这里,我们提出了一种新的方案,用于独立设计手性跨膜的圆形二色性和光学活性,以进一步控制传输波的极化和波前。受到手性分子异构体的混合物的启发,我们使用介电异构体谐振器形成“超级单元”,而不是Terahertz带中的手性反应,而不是单个元原子,这被称为Racemic Metasurface。通过在元原子和“超级单元”之间引入两个级别的pancharatnam-berry阶段,可以在没有远场圆形二科运动的情况下进行极化旋转角度和梁的波前。我们通过模拟和实验证明了该方案的Terahertz波的强大控制能力。此外,这种具有近场手性但没有远场圆形二分法的新型设备在光学传感和其他技术中也可能具有重要价值。
高选择性、速率提高和化学特异性是酶催化反应的特点,化学家们力求用合成催化剂模仿这些特点。1 与自然界的进化过程不同,小分子催化剂的合理而深思熟虑的设计需要精确的结构变化,理想情况下,这些变化可以对反应性和选择性产生可预测和合理的影响。在不对称催化领域,人们希望可靠地调整手性环境的空间和电子分布以影响反应的选择性,这导致广泛使用刚性的 C 2 对称配体和有机催化剂 2,而传统上人们认为灵活性是一种不受欢迎的特性。在这些系统中,经典的物理有机技术与通过密度泛函理论 (DFT) 定位过渡态 (TS) 结构相结合,已经成为理解选择性相互作用的常用方法。 3 对于传统手性催化剂,由于其相对不灵活性,因此可以进行计算研究,通常仅使用关键中间体和 TS 的最低能量结构来确定影响选择性的相互作用。
简介。最近的Moiré材料激增已大大扩大了具有强相关电子的实验平台的数量。虽然相关的绝缘状态和扭曲双层石墨烯中的超导性[1-4]的超导能力启动,但过渡金属二分法(TMD)材料的双层中电子相关性的强度超过了石墨烯cousins中的材料[5]。在TMD中进行的实验揭示了Mott绝缘子的特征[6-10],量子异常的霍尔效应[11]和 - 在杂词中 - 分数纤维上的莫特 - 木晶体[7,12-16]。当电子电荷定位时,只有自旋程度仍然存在,并且在最近的实验中开始研究TMDMoiréBiLayers中的杂志[17-19]。Heterobilayers在三角形晶格上意识到了一个诱导的Hubbard模型[20-23],因此,局部旋转非常沮丧。这种挫败感可能会导致旋转液相,这是一种异国情调的物质,其物质实现一直在寻求[24,25]。在这封信中,我们表明n =±3 /4的通用Mott-Wigner状态报告了WSE 2 / WS 2双层[12,13]的填充状态,可以实现手性旋转液体[26,27]和Kagome Spin液体(KSL)[28-33]。在这种特殊的填充下,电子位于有效的kagome晶格上,该晶格以其高度的几何挫败感而闻名。TMD双层的可调节性 - 更换扭曲角度,栅极调整,材料在这里,我们证明了现实的模型参数如何导致该kagome晶格的有效自旋模型,并使用广泛的最新密度矩阵构造组(DMRG)模拟研究模型[34,35]。
摘要:手性纳米结构允许手性反应的工程;但是,它们的设计通常依赖于经验方法和广泛的数值模拟。尚不清楚是否存在一般策略来增强和最大化亚波长光子结构的内在手性。在这里,我们建议一种显微镜理论,并揭示了共振纳米结构的强性手性反应的起源。我们揭示了反应性螺旋密度对于在共振下实现最大的手性至关重要。我们在平面光子晶体板和元图的示例上演示了我们的一般概念,其中平面镜像对称是通过双层设计打破的。我们的发现为设计具有最大手性的光子结构提供了一般配方,为许多应用铺平了道路,包括手性传感,手性发射器和探测器以及手性量子光学器件。关键字:光学手性,手性元结构,连续体中的界限,圆形二科主义
手性是自然的重要方面,并且已经开发出许多宏观方法来了解和控制手性。对于手性高等胺,它们的柔性翻转过程使得在不形成粘结和破裂的情况下实现高性能可控性。在这里,我们提出了使用石墨烯 - 分子 - 透明烯单分子连接的第三级胺形成的一种稳定的手性单分子器件。这些单分子设备允许实时,原位,并长期测量具有高时间分辨率的个体手性氮中心的翻转过程。温度和偏置电压依赖性实验以及理论研究表明多种性手性中间体,表明通过能量相关因素对翻转动力学进行调节。角度依赖性测量进一步证明了使用与对称相关因子线性极化的光线有效地富集了手性态。这种方法提供了一种可靠的手段,可以理解手性的起源,阐明微观手性调节机制,并有助于有效药物的设计。
摘要:在Weyl Semimetals的磁催化场景的背景下,提出了一种在极高磁场处进行手性对称性恢复的新机制。与以前的提案相反,我们在这里表明,在非常大的磁场上,轴突场的横向速度,手性冷凝物的相模式⟨⟨⟨ψ电话,有效地变为一维及其波动破坏了该费米式冷凝物的可能的非零值。我们还表明,尽管有U(1)手性对称性未在极大的磁场上破裂,但系统的光谱由定义明确的无间隙波式激发,连接到轴轴模式,以及相关的绝缘纤毛液体与U(1)手性渗透性相关的纤毛液体。当该理论补充了动态电磁场的包含时,手性对称性再次被打破,并且可以恢复磁性催化的常规情况。