本课程重点介绍现代数字电路的分析和设计。从数字角度介绍和描述硅技术和晶体管,并推导和评估各种电路的性能。将设计和分析 CMOS 数字电路。学生将使用商业软件 Cadance 进行为期一学期的团队 SRAM 芯片设计项目。项目将涵盖制造变化等高级主题。
Nielsen, Michael A. 和 Isaac Chuang。“量子计算和量子信息。” (2002)。Gottesman, Daniel。“量子计算机的海森堡表示。” arXiv preprint quant-ph/9807006 (1998)。
8.运算放大器 - 最高级的激活器 89 9.消除杂散振荡 108 10.模拟-数字边界:梦幻岛?120 1 I.处理参考和调节器 135 12.“Floobydust” 综述:其他地方不适合的未完成内容 143 1 3. 致鲍勃的信 155 14.实际电路和实际问题 172
了解正反馈和负反馈系统所需的功能。 UNIT I PN 结器件 9 PN 结二极管 – 结构、操作和 VI 特性、扩散和过渡电容 - 削波和钳位电路 - 整流器 – 半波和全波整流器 – 显示设备 - LED、激光二极管、齐纳二极管特性 - 齐纳反向特性 – 齐纳作为稳压器 UNIT II 晶体管和晶闸管 9 BJT、JFET、MOSFET – 结构、操作、特性和偏置 UJT、晶闸管和 IGBT - 结构和特性。 UNIT III 放大器 9 BJT 小信号模型 – CE、CB、CC 放大器分析 – 增益和频率响应 – MOSFET 小信号模型 – CS 和源极跟随器分析 – 增益和频率响应单元 IV 多级放大器和差分放大器 9 BIMOS 级联放大器、差分放大器 – 共模和差模分析 – FET 输入级 – 单调谐放大器 – 增益和频率响应 – 中和方法、功率放大器 – 类型(定性分析)。单元 V 反馈放大器和振荡器 9 负反馈的优点 – 电压/电流、串联、并联反馈 – 正反馈 – 振荡条件、相移 – 维恩电桥、哈特利、考毕兹和晶体振荡器。
8.运算放大器 - 最高级的激活器 89 9.消除杂散振荡 108 10.模拟-数字边界:梦幻岛?120 1 I.处理参考和调节器 135 12.“Floobydust” 综述:其他地方不适合的未完成内容 143 1 3. 致鲍勃的信 155 14.实际电路和实际问题 172
********问题:P 6.60 **************** ****** 主电路从这里开始************** Q2 VC VB VE QECL R1 0 VE 1k TC=0,0 R2 VB VCC 100k TC=0,0 R3 VC VCC 1k TC=0,0 V_sup VCC 0 3 ****** 主电路从这里结束****************************************** *********** ECL BJT 模型从这里开始******************************* .model QECL NPN(Is=0.26fA Bf=100 Br=1 Tf=0.1ns Cje=1pF Cjc=1.5pF Va=100) *********** ECL BJT 模型从这里开始******************************* ******* 分析从这里开始**************** .OP .END ******* 分析从这里结束****************
量子信息技术为提高设备相干性,对材料和界面的质量提出了严格的要求。然而,人们对顺磁杂质的化学结构和来源知之甚少,这些杂质会产生通量/电荷噪声,导致脆弱量子态的退相干,阻碍大规模量子计算的发展。在这里,我们对量子器件的常见基板-Al 2 O 3 进行高磁场电子顺磁共振 (HFEPR) 和超精细多自旋光谱分析。在无定形形式下,-Al 2 O 3 也不可避免地存在于铝基超导电路和量子比特中。检测到的顺磁中心位于表面之内,具有明确但高度复杂的结构,延伸到多个氢、铝和氧原子。建模表明,这些自由基可能源自许多金属氧化物中常见的活性氧化学。我们讨论了 EPR 光谱如何有益于寻找表面钝化和退相干缓解策略。