晚上的光对哺乳动物的生理和行为具有很强的影响。它会影响人类的情绪,该情绪被用作光治疗,并已被证明可以重置昼夜节律时钟(SCN)。此重置对于将生理和生化时机排列到环境光线周期至关重要。在这里我们提供了证据表明,Zeitgeber时间(ZT)22的光也通过激活侧向Habenula(LHB)中的时钟基因周期1(PER1)来影响小鼠的情绪相关行为,这是一个已知调节情绪相关行为的大脑区域。我们表明,在小鼠中完全缺失PER1导致抑郁症的行为和光对这种行为的有益影响的丧失。相比之下,LHB区域中PER1的特定缺失不会影响与情绪相关的行为,而是支持光的有益作用。RNA序列分析在中唇型多巴形系统中揭示了在ZT22处光脉冲后的基因表达的深刻变化。在伏隔核(NAC)中,气味和G蛋白偶联受体signaling的感觉感知最大。有趣的是,这些基因中的大多数在PER1敲除动物中不受影响,表明光诱导PER1是大脑中光中含有基因表达的过滤器。共同表明,光线至少部分通过LHB中的PER1诱导而影响小鼠的情绪相关行为,并影响中溶胶多巴胺能系统中与情绪相关的行为和信号机制的影响。
重复使用 存放在 White Rose Research Online 中的项目受版权保护,保留所有权利,除非另有说明。您可以下载和/或打印这些项目用于个人学习,或国家版权法允许的其他行为。出版商或其他权利持有人可能允许进一步复制和重复使用全文版本。这由 White Rose Research Online 记录中该项目的许可信息指示。
• 完成自我调查,了解有效的职业/技术教育教师应具备的特征。 • 制定计划,发展适当的课堂文化元素,考虑相互尊重、支持社区和接受个体差异 • 了解虐待儿童的迹象,并了解根据学校政策报告疑似虐待儿童的程序。 • 根据适当的 TPEP 框架描述 3 级和 4 级课堂设计的元素。包括在线课堂设置的设计元素。解决与助教安全高效地合作的问题 • 利用对学习者风格和速度的了解来计划差异化课程,以满足学生的干预/充实需求。 • 利用对认知分类法(如布卢姆斯或韦伯的知识深度)元素的理解,以及认知、情感和心理运动学习领域的基本特征,为编写全班和小组学生成长目标制定计划 • 确定 CTE 课程框架/标准,并说明它们与学术标准和课程计划以及 21 世纪技能的关系。 • 使用学习原则来规划和教授示范课 • 使用课程设计的基本要素来创建示范课计划 • 举例说明何时使用形成性和总结性评估来提高学生的学习。示范使用评分标准而不是检查表 • 使用确定的教学设计流程制定和教授职业技能演示的课程计划 • 使用评分标准分析自己和同学的微型教学演示 • 承认班级成员目前居住和教学地区的第一批居民。承认、规划和尊重自认为是本地人的学生所表现出的文化差异。
通过单击工具栏中的图标,您可以查看通量的首选项。您可以移动滑块以设置屏幕的构图。您可以看到我始终将我的矿山设置为更黄。它知道我在凌晨6:30醒来,并假定我的就寝时间是晚上10:30。您可以看到,当我们接近邮政编码的日落时,它将改变我的屏幕的组成,甚至在过去的睡前时更加急剧。
1简介移动网络的第五代(5G)预计将提供广泛的基于位置的服务[1]。为了为这些服务铺平道路,文献中已经引入了无数确切的位置技术,其中大多数依赖于为移动用户(MUS)[2]的访问点(APS)之间的合作(APS)之间的合作。,特别是为了估算位置,这些技术利用了代理之间(即MUS和AP之间进行的时间测量),要求它们具有共同的时间群[3]。因此,对于合作的功能方法,需要在彼此之间以及与MUS相互准确同步AP [4,5]。已经付出了巨大的努力来设计从不同网络的快速,连续和精确的同步算法,从无线传感器网络(WSN)到无线通信网络[6]。通常,最新同步
全球导航卫星系统(GNSS)的摘要未来后代可以从光学技术中受益。尤其是光学时钟可以备份或替换当前使用的微波时钟,有可能改善通过其较低频率不稳定性来提高GNSS位置确定。此外,光学时钟技术(与光学卫星间链接结合使用),可启用新的GNSS体系结构,例如,通过使用时间和频率传输技术在星座内同步远处的光学频率参考。基于分子碘的无多普勒光谱的光学频率参考被视为未来GNSS光学时钟的有前途的候选者。已开发了紧凑型和坚固的设置,显示了1 s至10,000 s的平均时间在10-15级的频率不稳定性。我们介绍了未来GNSS应用程序的光学时钟技术,并介绍了我们基于碘的光频率参考的开发的当前状态。
摘要 未来几代全球导航卫星系统 (GNSS) 可受益于光学技术。特别是光学时钟可以备份或取代目前使用的微波时钟,由于其较低的频率不稳定性,有可能改善 GNSS 定位。此外,光学时钟技术与光学卫星间链路相结合,可实现新的 GNSS 架构,例如,通过使用时间和频率传输技术同步星座内的远距离光学频率参考。基于分子碘的无多普勒光谱的光学频率参考被视为未来 GNSS 光学时钟的有希望的候选者。已经开发出紧凑而坚固的装置,显示在 1 秒到 10,000 秒之间的平均时间内频率不稳定性在 10-15 级别。我们介绍了用于未来 GNSS 的光学时钟技术,并介绍了我们基于碘的光学频率参考的当前开发状态。
尽管我们习惯于谈论原子钟,但这些设备的起源可以追溯到核物理学的研究。在1924年,沃尔夫冈·保利(Wolfgang Pauli)指出,原子光谱线的某些分裂起源于核的磁矩与电子1之间的耦合。在1935年,亨德里克·卡西米尔(Hendrik Casimir)表明,当细胞核的电荷分布不是球上对称2时,电动相互作用会产生可比幅度的线分裂,但具有不同的光谱模式。基于这种超细结构的精确测量,原子过渡的光谱已成为有关核性质的信息的重要来源。Isidor Rabi组研究了与微波辐射3相互作用的原子梁。可以以极好的重现性记录一些共振,以至于Rabi在1945年提议将它们用于“最准确的时计” 4。这是剖腹时钟的开创性想法,它一直是时间的基础数十年5。尽管在20世纪下半叶,原子和核PHY SIC的领域朝着不同的方向扩展,但现在,一个新兴的话题正在两个领域之间在两个领域之间建立新的联系,而高度精确的时钟的概念再次起着中心作用。在约9.2 GHz处CS时钟的共振频率取决于133 CS核,价电子及其电磁相互作用的性质。在设计良好的时钟中,原子受到保护,免受其他明智地改变共振频率的外部扰动。近年来,在
摘要:我们考虑了相对论潮汐对时钟比较实验频率偏移的影响。在潮汐、轴对称和旋转的地球引力场中,推导出频率偏移和时间传递的相对论公式。借助描述固体地球潮汐响应的洛夫数,我们建立了地面时钟比较实验的潮汐效应与重力仪的局部重力潮汐之间的数学联系,这反过来又为我们提供了一种利用局部重力潮汐数据消除潮汐对时钟比较影响的方法。此外,我们开发了一种受扰开普勒轨道的方法来确定太空任务时钟比较的相对论效应,与传统的未受扰开普勒轨道方法相比,该方法可以进行更精确的计算。利用这种摄动方法,可以给出由于潮汐力、地球扁率等影响而引起的轨道变化对相对论效应的摄动。另外,作为结果的应用,我们模拟了地面时钟比较中频移的潮汐效应,并对天琴任务和 GPS 给出了一些估计。
隐形传态是量子力学的一个基本概念,其重要应用在于通过量子中继节点扩展量子通信信道的范围。为了与现实世界的技术(如通过光纤网络进行安全量子密钥分发)兼容,这样的中继节点理想情况下应以千兆赫时钟速率运行,并接受 1550 nm 左右低损耗电信频段中的时间箱编码量子比特。本文表明,InAs-InP 液滴外延量子点的亚泊松发射波长接近 1550 nm,非常适合实现该技术。为了以千兆赫时钟速率创建必要的按需光子发射,我们开发了一种灵活的脉冲光激发方案,并证明快速驱动条件与低多光子发射率兼容。我们进一步表明,即使在这些驱动条件下,从双激子级联获得的光子对也显示出接近 90% 的纠缠保真度,与连续波激发下获得的数值相当。使用非对称马赫-曾德尔干涉仪和我们的光子源,我们最终构建了一个时间箱量子比特量子中继,能够接收和发送时间箱编码的光子,并展示出 0.82 ± 0.01 的平均隐形传态保真度,超过经典极限十个标准差以上。
