这项横断面研究比较了具有全身性合并症的老年人和白人成年人之间的光学相干断层造影术(八八)参数,以进一步了解视网膜微血管造成的种族差异。我们分析了浅表(SCP),中间(ICP)和深毛细血管(DCP),卵泡血管区(FAZ)参数和血流(BFA)的血管密度。我们使用了混合效应的线性回归模型,控制着高血压和来自同一受试者的两只眼睛,以比较八颗参数。黑色受试者在SCP和ICP处的中央凹ves ves-sel密度较低,而在任何毛细血管层的Parafovea或3x3 mm黄斑区域都没有观察到差异。黑色受试者具有更大的FAZ区域,周长和FD-300,这是FAZ周围300μm宽环的血管密度的测量。黑色受试者在脉络膜毛细血管处也具有较低的BFA。在没有高血压的受试者队列中,这些差异仍然具有统计学意义,除了脉络膜毛细血管的SCP和Foveal BFA外凹容器密度外。这些发现表明,八章参数的规范数据库必须在本质上努力多种多样,以充分捕捉患者人群之间的差异。需要进一步的研究以了解八八参数的基线差异是否导致眼部疾病中的流行病学疏散。
与荧光素血管造影(FA)相比,DR的黄金标准诊断标准,八颗八颗有助于评估视网膜微瘤状况。作为需要静脉穿刺和染料输注的方法,FA是侵入性且耗时的。此外,FA仅提供二维图像[3,4]。加上,深毛细血管(DCP)的八八图比其FA图像清晰。此外,在测量中央凹性血管区(FAZ)[5]时,八八颗粒的观察者间变异性比FA较小。八八人在诊断DR方面具有几个独特的优势。它具有在微血管异常(MAS)(MAS)之前检测到的早期迹象的能力,这些迹象包括毛细血管辍学,扩张的毛细血管环和毛细管分支[6]。此外,它可以检测一些未被FA捕获的MAS [7,8]并识别MAS和受影响的毛细血管丛的位置[9]。考虑到其清楚地识别增殖膜和后透明膜之间的结构关系[10-12],八
单线裂变(SF)可以生成一个交换耦合五重奏三联对状态5 tt,这可能会导致量子计算和量子传感的实现,即使在室温下,也可以使用纠缠的多个量子。然而,观察5吨的量子相干性仅限于低温温度,基本问题是哪种材料设计将使其室温量子相干性。在这里我们表明,在室温下,在发色团综合金属有机框架(MOF)中,SF衍生的5 tt的量子相干性可以超过一百纳秒。MOF中发色团的微妙运动导致5 tt生成所需的交换相互作用的足够波动,但同时也不会引起严重的5 tt腐蚀性。此外,可以通过分子运动来控制量子跳动的相位和振幅,从而开放基于多个量子栅极控制的室温分子量子计算。
D 8QLYHUVLW\ RI &DOLIRUQLD 5LYHUVLGH E ,QGHSHQGHQW 5HVHDUFKHU )UHPRQW &$ &RUUHVSRQGLQJ $XWKRU %UHQW +XJKHV (PDLO EKXJKHV#XFU HGX 1XPEHU RI 3DJHV )LJXUHV 7DEOHV $EVWUDFW :RUG &RXQW ,QWURGXFWLRQ :RUG &RXQW 'LVFXVVLRQ :RUG &RXQW 1R FRQIOLFW RI LQWHUHVW
摘要:变形是子系统的时间进化降低密度矩阵的趋势,即假设与状态统计集合相对应的形式,而不是纯状波函数的相干组合。当分子过程涉及电子状态和核的坐标的变化时,例如紫外线或可见光光光化学或电子非弹性碰撞,电子子系统的密度矩阵会减少与核子系统的相互作用。我们提出了概念化这种折叠的必要背景;特别是,我们讨论了纯状态和混合状态的密度矩阵描述,并讨论了指针状态和腐烂时间。然后,我们讨论如何与混合算法的衰减和轨迹表面跳跃方法中的连贯切换处理,以进行电子非绝热过程的半经典计算。
混合超导体 - 触发器设备为固态量子信息处理提供了独特的优势。特别是,自十年前的成立以来,Gatemon Qubit已被证明是一个多功能的实验平台。对于所有类型的Qubits,理解和克服的破坏性是向大规模量子计算进展的重要部分。在本论文中,提出了与GATEMON中的分层有关的三个不同的研究。首先,在有限的磁场中研究了在Inas纳米线中形成的带有完全覆盖的壳的gatemon。在应用领域中调查该系统的是可能存在Majorana零模式的可能性,该模式可用于防止逆转。观察到量子转换频率对磁场的非单调依赖性被观察并解释为破坏性的小公园效应。没有观察到有限的主要耦合(E M)的特征。通过测量值的电荷分散体,将上限放置在E m / h <10mHz时。接下来,研究了纳米诺威氏菌在纳米线gatemon中诱导的奇偶校验切换。准颗粒中毒会导致逆转状态,并且是超导Qubits损失的重要来源。在零磁场时,发现切换在100 ms的时间尺度上发生。随着温度或磁场的增加,切换速率被观察到第一个常数,然后呈指数增加,这与共存非平衡和热准粒子的常规图片一致。在零磁场上缓慢的平价切换对于gatemon连贯时间的未来发展有希望。最后,提出了对基于2DEG的盖特尼人的早期结果,其多个大门接近约瑟夫森交界处。
ρnm(t)=⟨n| p(t)| m⟩=⟨n| ψ ( t ) ⟩⟨ ψ ( t ) | m⟩=⟨n|乌 | ψ 0 ⟩⟨ ψ 0 | †米⟩(22)
腔QED实验是光子介导相互作用支持的物质非平衡阶段的天然宿主。在这项工作中,我们考虑了通过研究腔体光子作为动力学自由度而不是通过虚拟过程的相互作用的动态介体来对BCS超级流动性模型进行的腔QED模拟。,每当将腔频率与原子共鸣时,我们发现了淬灭后长时间相干性的增强。我们讨论这与非平衡超级流体的增强相当,并突出了与最近在固态量子光学元件中研究的类似现象的相似性。我们还通过在我们的分析中包括光子损失和不均匀耦合的影响,讨论实验中观察这种增强的谐振配对的条件。
