固态自旋缺陷,尤其是可能实现长相干时间的核自旋,是量子存储器和传感器的有力候选者。然而,由于其固有四极子和超精细相互作用的变化,它们当前的性能仍然受到失相的限制。我们提出了一种不平衡回波来克服这一挑战,即使用第二个自旋重新聚焦这些相互作用的变化,同时保留存储在核自旋自由演化中的量子信息。不平衡回波可用于探测材料中的温度和应变分布。我们开发了第一性原理方法来预测这些相互作用的变化,并揭示它们在较大温度和应变范围内的相关性。在金刚石中大约 10 10 个核自旋的集合中进行的实验表明,受其他噪声源的限制,失相时间增加了 20 倍。我们进一步通过数值表明,我们的方法可以重新聚焦比我们实验中更强的噪声变化。
摘要背景:肌肉间同步是有效运动表现和日常生活活动的关键方面之一。本研究旨在利用小波分析评估轮椅击剑运动员躯干稳定肌的同步性。方法:评估了左右两组背阔肌/腹外斜肌 (LD/EOA) 肌肉间的肌肉间同步性和拮抗性 EMG-EMG 相干性。研究组由 16 名轮椅击剑运动员组成,他们是波兰残奥会队的成员,分为两类残疾(A 和 B)。数据分析分三个阶段进行:(1) 使用 sEMG 记录肌肉激活;(2) 小波相干性分析;(3) 相干性密度分析。结果:在残奥会轮椅击剑运动员中,无论其残疾类别如何,肌肉都在低频率水平上被激活:A 类击剑运动员为 8-20 Hz,B 类击剑运动员为 5-15 Hz。结论:结果表明,轮椅击剑运动员(包括脊髓损伤运动员)的躯干肌肉活动明显,这可以解释为他们高强度训练的结果。肌电信号处理应用在提高轮椅运动员的表现和诊断方面具有巨大潜力。关键词:小波分析、残疾运动员、脊髓损伤、肌电图、频率水平
量子相干性是量子力学的基本特征之一。量子相干源理论不仅在量子理论中而且在实际应用中都发挥着重要作用[1–4]。量化量子态的相干性是量子相干源理论的核心任务之一。Baumgratz 等人提出了一个严格的框架来量化相干性[5]。该框架规定了良好的相干性测度必须满足几个条件。基于该框架,人们针对固定正交基提出了许多合适的测度[6–13]。相干性相对熵 (REOC) 和相干性 l 1 范数是两个典型的量子相干性测度,已被证明能够满足这些条件[5]。[12] 的作者提出了一种基于 Tsallis 相对 α 熵的相干性测度。作者证明了上述相干性测度满足(C1)的条件,
固态自旋缺陷,尤其是具有可能可实现的长相干时间的核自旋,是量子记忆和传感器的诱人候选者。但是,由于其内在四极杆和超细相互作用的变化,它们的当前性能仍然受到限制。我们提出了一个不平衡的回声来克服这一挑战,通过使用第二个自旋来重新调整这些相互作用的变化,同时保留存储在核自旋进化中的量子信息。不平衡的回声可用于探测材料中的温度和应变分布。我们开发了第一个原理方法来预测这些相互作用的变化,并揭示了它们在大温度和应变范围内的相关性。在钻石中大约10 10个核自旋中进行的实验表明,增加了20倍的去态时间,受到其他噪声源的限制。我们进一步表明,与实验中的相比,我们的方法可以重新调整更强的噪声变化。
摘要:紫外线(UV)辐射会导致90%的光损伤对皮肤,长期暴露于紫外线辐射是对皮肤健康的最大威胁。研究了紫外线引起的光损伤的机制和晒伤皮肤的修复,要解决的关键问题是如何非破坏性和连续评估对皮肤的UV诱导的光损伤。在这项研究中,提出了一种使用光学相干断层扫描(OCT)定量分析人工皮肤(AS)的结构和组织光学参数的方法,作为一种非损害和连续评估光损伤效果的一种方式。是根据OCT图像的强度信号的特征峰来实现表面粗糙度的,这是使用Dijkstra算法量化为角质层厚度的基础。通过灰级共发生矩阵法获得的本质本地纹理特征。一种经过修改的深度分辨算法用于量化基于单个散射模型的3D散射系数分布。对AS进行了光损伤的多参数评估,并将结果与MTT实验结果和H&E染色进行了比较。紫外线发生损伤实验的结果表明,与正常培养的AS相比,光损伤模型的角质层较厚(56.5%),表面粗糙度(14.4%)。角第二矩更大,相关性较小,这与H&E染色显微镜的结果一致。AS的组织散射系数与MTT结果良好相关,可用于量化生物活性的损害。角度时刻和相关性与紫外线辐射剂量有良好的线性关系,这说明了OCT在测量内部结构损伤中的潜力。实验结果还证明了维生素C因子的抗疫苗效率。对AS的结构和组织光学参数的定量分析可实现多个维度中AS的非破坏性和连续检测。
最近已经证明,激光可能会产生具有相干性(量化为光谱峰处的平均光子数)的固定光束,该光束缩放为激光器中存储的平均激发数的第四幂,这比标准或schawlow-limtlate limatation the the the the the激励数量。,nat。物理。17,179(2021)]。此外,在分析上证明,这是CW激光器定义条件下的最终量子限制(海森堡极限)的缩放,以及关于输出光束的性质的强有力的假设。在我们的相关工作中[Ostrowski等。,物理。修订版Lett。 130,183602(2023)]我们表明,后者可以被较弱的假设所取代,该假设允许高度亚dososonian输出梁,而无需更改上限尺度或其可实现性。 在本文中,我们提供了相关论文中给出的计算的详细信息,并介绍了三个激光模型家族,这些模型可能被认为是该工作中介绍的模型的概括。 这些激光模型中的每个家族都由一个实数P = 4对应于原始模型的实际数字P = 4。 这些激光家族的参数空间进行了数值研究,我们在其中探讨了这些参数对激光束相干性和光子统计的影响。 可以根据P的选择来识别两个不同的连贯性方案,在P> 3中,每个模型都表现出Heisenberg-Limimimited Beam的连贯性,而对于P <3,Heisenberg极限不再达到。 15,而不是p = 4。Lett。130,183602(2023)]我们表明,后者可以被较弱的假设所取代,该假设允许高度亚dososonian输出梁,而无需更改上限尺度或其可实现性。在本文中,我们提供了相关论文中给出的计算的详细信息,并介绍了三个激光模型家族,这些模型可能被认为是该工作中介绍的模型的概括。这些激光模型中的每个家族都由一个实数P = 4对应于原始模型的实际数字P = 4。这些激光家族的参数空间进行了数值研究,我们在其中探讨了这些参数对激光束相干性和光子统计的影响。可以根据P的选择来识别两个不同的连贯性方案,在P> 3中,每个模型都表现出Heisenberg-Limimimited Beam的连贯性,而对于P <3,Heisenberg极限不再达到。15,而不是p = 4。此外,在以前的政权中,我们得出了与数字一致的这三个激光家族中每个激光族的光束相干性的公式。我们发现最佳参数实际上是p≈4。
高维状态的量子叠加使得加密协议中的计算速度和安全性都得以提升。然而,层析成像过程的指数复杂性使得这些属性的认证成为一项具有挑战性的任务。在这项工作中,我们使用由飞秒激光写入技术制造的六模通用光子处理器实现的成对重叠测量,通过实验认证了针对不断增加的维度的量子系统的相干性见证。特别是,我们展示了所提出的相干性和维度见证对于维度高达 5 的量子比特的有效性。我们还展示了量子询问任务中的优势,并表明它是由量子语境性推动的。我们的实验结果证明了这种方法对于可编程集成光子平台中量子属性认证的有效性。
我们讨论了与耗散环境耦合的多态系统随时间演化的约化密度矩阵 (RDM) 的一般特征。我们表明,通过相干图,即系统站点方格上 RDM 实部和虚部的快照,可以有效且透明地可视化动态的许多重要方面。特别是,相干图的扩展、符号和形状共同表征了系统的状态、动态的性质以及平衡状态。系统的拓扑结构很容易反映在其相干图中。行和列显示量子叠加的组成,它们的填充表示幸存相干的程度。虚 RDM 元素的线性组合指定瞬时群体导数。主对角线包含动力学的非相干分量,而上/下三角区域产生相干贡献,从而增加 RDM 的纯度。在开放系统中,相干图演变为围绕主对角线的带,其宽度随温度和耗散强度的增加而减小。我们用具有 Frenkel 激子耦合的 10 位模型分子聚集体的例子来说明这些行为,其中每个单体的电子态都耦合到谐波振动浴中。
含有带负电的氮空位中心 (NV − ) 的纳米金刚石可用作生物材料中的局部传感器,并已被提议作为探测空间叠加的宏观极限和引力的量子性质的平台。这些应用的一个关键要求是获得含有 NV − 并具有长自旋相干时间的纳米金刚石。与蚀刻柱不同,使用研磨来制造纳米金刚石可以一次处理块状材料的整个 3D 体积,但到目前为止,NV − 自旋相干时间有限。在这里,我们使用通过 Si 3 N 4 球磨化学气相沉积生长的块状金刚石生产的天然同位素丰度纳米金刚石,平均单一替代氮浓度为 121 ppb。我们表明,这些纳米金刚石中 NV − 中心的电子自旋相干时间在室温下在动态解耦的情况下可以超过 400 µ s。扫描电子显微镜提供了含有 NV − 的特定纳米金刚石的图像,并测量了其自旋相干时间。
基于非相干完全正映射和迹保持映射下量子相干性通过倾斜信息的非增性,我们提出了一种开放量子过程的非马尔可夫性测度。作为应用,通过将所提出的测度应用于一些典型的噪声信道,我们发现它等价于先前针对相位衰减和振幅衰减信道的三个非马尔可夫性测度,即基于量子迹距离、动态可分性和量子互信息的测度。对于随机酉信道,它等价于一类输出态基于相干性l 1 范数的非马尔可夫性测度,并且不完全等价于基于动态可分性的测度。我们还利用修正的Tsallis相对α相干熵来检测量子开放系统动力学的非马尔可夫性,结果表明,当α较小时,修正的Tsallis相对α相干熵比原始的Tsallis相对α相干熵更加合适。