背景:习惯性地在绿地上下班可能与促进健康有关,包括缓解压力。然而,很少有研究评估过通勤期间接触绿地与压力水平的关系,也没有研究追踪过通勤者的实际路线。目的:评估 1)通过绿地通勤与人们自我感知压力之间的关联,2)这种关联是否受交通方式的影响,3)这种关联是否取决于不同的绿地操作和缓冲区大小。方法:这项横断面研究使用了来自 18-65 岁荷兰成年人(N = 275)的问卷和全球定位系统数据。感知压力量表用于测量人们的压力水平。通过计算土地利用数据 (GREEN LU ) 中的绿地百分比,并使用从 Sentinel-2 (NDVI SE ) 和 Landsat-8 (NDVI LS ) 卫星图像获得的归一化差异植被指数 (NDVI) 来测量绿地。沿通勤路线设置 50、100 和 250 米的缓冲区来评估受试者的环境暴露。使用普通最小二乘回归模型估计关联。结果:协变量调整回归显示,无论缓冲区大小如何,GREEN LU 与压力水平呈显着正相关。相比之下,NDVI 测量始终显示零关联。在分层分析中,我们观察到 250 米缓冲区内的活跃通勤者的 GREEN LU 与压力水平之间存在正相关;然而,对于所有绿地测量和缓冲区大小的被动通勤者来说,关联均为零。结论:我们的研究结果表明,日常通勤期间接触绿地的增加与人们的压力水平之间存在违反直觉的正相关关系。这些关联可能取决于所选的绿地指标、缓冲区大小和考虑的通勤模式。人们体验绿色环境的行为方面(包括通勤)可能会对其健康产生影响。
摘要 电动动力系统具有与带有内燃机的传统动力系统不同的特性,并且需要非常规的飞机设计才能充分发挥其潜力。因此,本文介绍了一种识别带有电动动力系统的潜在飞机设计的方法。LuFo 项目 GNOSIS 的项目合作伙伴收集了动力系统架构、气动相互作用、机载系统和操作策略等领域的有前景的技术选项。从全球排放(CO 2 )、局部排放(NO X 和噪音)和运营成本方面评估了技术选项对通勤飞机的影响。评估考虑了 2025 年和 2050 年投入使用,并以参考飞机 Beechcraft 1900D 为基础。文献综述和简化计算使得能够对气动相互作用、系统和操作策略进行评估。初步的飞机设计工具通过引入“动力混合”和“动力分配”两个参数来评估不同的动力系统架构。随后,将兼容的技术选项汇编成技术篮,并使用与理想解的最短欧几里得距离和与最差解的最远欧几里得距离进行排序(按与理想解的相似性排序技术 (TOPSIS) 方法)。对 CS 23 法规的分析导致了高翼设计,并排除了在飞机尾部带有燃气涡轮的部分涡轮电动动力系统架构。对于 2025 年,选择了带有两个额外电动翼尖螺旋桨的部分涡轮电动动力系统。到 2050 年,串行混合动力系统使用燃气涡轮或燃料电池与电池组合,为机翼前缘的分布式电动推进器提供动力。在这两种情况下,飞机设计都包括电动环境控制系统、电动起落架和用于主飞行控制和起落架的电液执行器。