The objective of this study was to develop hybrid nanoparticles (HNCs) from two monomers, methyl methacrylate (MMA) and butylacrylate (BA), using miniemulsion polymerization method in the presence of Algerian Montmorillonite (AMMT), and different types of surfactants, such as the double-chain cationic didodecyldimethylammonium bromide (DDAB),undecafluoro n-戊酰十氧基乙烯醚(C 5 F 11(EO)10)和混合表面活性剂系统(FSO-100/DDAB)。少见研究,尤其是关于获得去角质杂交纳米颗粒的可能性。在这项研究中,优化了聚合反应的几个参数,并允许得出结论: MMA-CO BA,c)用于采条微型乳化聚合,修饰的MMT充当表面活性剂,并构成了粘土交给粘土的交流,并稳定了微型乳化剂的粒子 - 溶剂界面。粘土的百分比越高,较不稳定的是微型乳液,而其多分散性越高,d)最稳定的纳米颗粒是用AMMT-HTA +重量为0.5%获得的,这是去角质纳米复合材料的特征。添加2%的N六烷烷(N-HD)导致尺寸降低了50%,表明该化合物在微乳液中稳定颗粒的有效性。
摘要 摘要 准确预测隧道施工引起的地表沉降对于保证隧道工程安全施工和决策至关重要。本文建立了一种用于预测盾构隧道施工引起地层变形的物理信息神经网络(PINN)模型。该模型将隧道收敛变形与隧道开挖位置的关系纳入深度神经网络(DNN)框架中。考虑到多地层的地质特点,提出了一种多物理信息神经网络(MPINN)模型,在统一的框架下表示不同地层的物理信息。结果表明,MPINN模型可以高度再现有限差分法的计算结果,并能准确预测考虑复合地层的复杂地质信息的隧道施工引起的地表沉降。由于MPINN模型具有完整的物理机制,适用于隧道施工引起的地表沉降问题,可以预测不同地质和几何条件下的隧道施工引起的地表沉降。基于实测数据,提出的MPINN模型能够准确预测监测断面地表沉降曲线,为隧道施工过程中地表沉降预测预警提供参考。
摘要。结构系统可能会由于动态激发和惯性而产生负矩。复合金属甲板平板通常设计用于承受正矩,并在底部得到加固,顶部的热增强最小。然而,在动态冲击负载下,上部的固定加固可能会导致这些平板在负矩下失败。因此,本研究调查了在自由下降重量冲击负载下复合金属甲板板的性能。该研究由两个主要部分组成:基于收集到的数据,通过NITE元素模拟分析和培训机器生成数据。LS-DYNA商业软件用于分析具有三个参数的165个模型:平板长度,前锋重量和前锋速度。在机器学习组件中,有限元建模(FEM)结果用于训练机器并准确预测这些板的性能。报告的结果是根据最大负矩,最大DE分解以及平板的弹性和塑性行为报告的。该研究表明,在高前锋速度下,标本在60至80 kN的范围内经历了最终的内部负矩。
本研究涉及通过反流方法的Tulsi Honey掺杂氧化葡萄岩(TH/CEO 2)的便利合成。使用UV-可见,FTIR,TEM和XRD技术对样品进行表征。使用TH/CEO 2在RH-B(Rhodamine b)染料上实施了光催化研究,并在80分钟后显示了95%的降解,在反应的一阶动力学速率和半寿命(t 1/2)周期为42.58分钟。使用镍网状电极在1 M KCL溶液中分析Th掺杂的CEO 2的氧化还原行为,表明电化学特性(例如电容(CSP),扩散系数(D)和可逆性(ER))的氧化还原行为显着改善。使用环状伏安法检测制备的纳米复合材料来检测Hg +2和Pb +2离子的传感器活性。在这里,Hg +2和Pb +2传感器使用准备好的材料展示了更好的传感特性。生成的TH/CEO 2使用2,2-二苯基丙烯酰氢羟基(DPPH)自由基表现出88%的自由基清除活性,IC50值为339.449 mg/ml。
文章历史记录:本研究探讨了用氧化铝纳米颗粒加强AL-6061铝合金的摩擦搅拌加工(FSP),分析了处理参数的影响,包括横向速度,旋转速度和通过的速度 - 通行数 - 最终的张力强度,产量强度,产量强度,固有强度,固有强度,固有强度,固有速度和压缩率。使用CNC铣床,以900、1100、1300和1500 rpm的旋转速度进行FSP,遍历速度为10、15和20 mm/min。使用了先进的机器学习模型,即SRS优化的长期短期记忆(LSTME),用于预测处理后材料的性能,达到0.911的高R²值的最终强度为0.951,屈服强度为0.951,固有频率为0.953,固有频率为0.985,为0.985进行阻尼比。关键发现表明,FSP改善了阻尼特性和机械性能,在所有通过中,在900 rpm处观察到最大阻尼有效性。氧化铝纳米颗粒增强了阻尼功能,而增加的旋转速度则促进了晶粒的细化,从而产生了更强,更具变形的抗耐性材料。LSTME模型的表现优于其他机器学习方法,在训练中达到0.965至0.993的R²值,测试中达到0.911至0.987。这些结果证明了将FSP与机器学习相结合以优化高性能应用的材料属性的功效。
摘要。对微型化,高功率密度和高频电子设备的需求不断增长,突显了具有高电磁干扰(EMI)屏蔽的聚合物复合材料的重要性。这些复合材料对于维护设备,减少沟通错误和保护人类健康至关重要。在这项研究中,我们通过静电相互作用和热压缩技术开发了一种机械压力的聚苯乙烯,MXENE和硝酸硼纳米片(BNNS)的复合材料。在复合材料中构建3D填充网络导致了显着的EMI屏蔽效果,尤其是在低频范围内。此外,观察到与非涂层样品相比,BNNSS包被的样品促成了优质EMI屏蔽效率。这表明BNNSS通过在复合材料中提供其他接口来提高EMI屏蔽效果,并有助于防止MXENE降解。我们希望我们的研究能够为复合材料中3D结构化填充网络的发展提供宝贵的见解,同时有助于改善导热性和EMI屏蔽性能。
最佳怀孕的关键因素是能量平衡。世界卫生组织 (WHO) 指出,怀孕期间的建议能量摄入量为每天 200 至 300 千卡。毛豆富含有益的维生素和矿物质,是孕妇的重要蛋白质来源。蒸海绵蛋糕是印度尼西亚最受欢迎的小吃之一。本研究旨在表征毛豆蒸海绵蛋糕的化学成分和感官评价。本研究采用完全随机设计,分为三个配方阶段。小麦和毛豆粉的比例为 100:0(对照组)、75:25(配方 A)和 50:50(配方 B)。蒸海绵蛋糕是按照标准烘焙程序制作的。对所有毛豆蒸海绵蛋糕的变化都进行了近似分析、能量、纤维、矿物质和抗氧化活性。感官特性的接受程度由二十五名半标准小组成员进行评估。使用SPSS 25版进行数据分析,并使用de Garmo的有效性指数检验确定最佳配方。方差分析显示碳水化合物、脂肪、蛋白质、总能量、钙和所有感官参数均存在显著差异(p值≥0.05)。从营养价值和接受程度结果来看,配方A被选为最佳配方。配方A的蛋白质含量为7.01%,碳水化合物含量为45.55%,脂肪含量为3.27%,能量含量为239.63 kcal/100g。总纤维为3.33%,由可溶性和不溶性纤维组成。配方A在颜色、质地和普遍接受度方面也是评审员最喜欢的。一份配方A蒸毛豆海绵蛋糕(50克)的能量含量为119.82 kcal,满足孕妇孕中期所需额外能量的40%。
摘要 本研究主要研究了通过添加石墨和二硼化铪 (HfB 2 ) 颗粒来显著提高 AA6061 合金混合复合材料的磨损性能。AA6061 合金因其高腐蚀性和耐磨性而广泛应用于航空和汽车领域。采用搅拌铸造法,通过在 AA6061 基体中添加不同百分比的石墨和 HfB 2 颗粒来创建混合复合材料。使用 SEM 和显微硬度计检查所得复合材料的微观结构,以验证增强颗粒的均匀分布和合金的硬度。为了比较混合复合材料与基体 AA6061 合金的摩擦学性能,在不同的负载条件下进行了磨损实验。结果表明,加入 5% 的石墨颗粒和 15% 的 HfB 2 颗粒后,耐磨性显着提高。坚硬的 HfB 2 颗粒提高了承载能力和耐磨性。石墨和 HfB 2 的协同作用产生了一种混合复合材料,与基础 AA6061 合金相比,其磨损率和摩擦系数明显较低。这项研究的成果凸显了混合增强策略在开发具有增强摩擦学性能的先进材料方面的潜力,使其有望成为汽车悬架部件和车顶导轨的替代品。
使用植物提取物(例如Ocimum Basilicum L.(OBL)种子)的绿色合成,由于其可持续和环保的性质引起了人们的关注。在这项研究中,使用OBL种子提取物在500°C和600°C的两个不同的钙化温度下使用OBL种子提取物合成Zno-MGO-MN 2 O 3纳米复合材料,并根据光催化施用和细胞毒性进行评估。植物化学物质充当生产路线中的减少和掩盖剂,从而导致具有独特特性的纳米材料形成。表征技术,包括XRD,FE-SEM和DRS,用于分析纳米复合材料的结构,形态和光学特征。XRD结果证实,晶体尺寸从〜32 nm(500°C)增加到〜84 nm(600°C)。另外,Fe-Sem图像显示出不规则形状的纳米复合材料的形成,样品的EDX光谱证实了锌,镁,锰和氧元素的存在。研究了不同有机污染物的纳米复合材料的光催化行为。eriiochrome黑色T染料的去除百分比为97%(pH = 10持续90分钟),甲基蓝色染料的99%(pH = 10,为60分钟),甲基橙色染料的89%(pH = 105分钟),Rhodamine b Dye(pH = 3 = 3 = 3 = 3 = 3 = 3 = 3.0分钟)。 此外,在4T1细胞系上评估了在500°C下合成纳米复合材料的细胞毒性,以投资其对生物系统的影响,并获得了IC 50值在323 µg/mL左右。eriiochrome黑色T染料的去除百分比为97%(pH = 10持续90分钟),甲基蓝色染料的99%(pH = 10,为60分钟),甲基橙色染料的89%(pH = 105分钟),Rhodamine b Dye(pH = 3 = 3 = 3 = 3 = 3 = 3 = 3.0分钟)。此外,在4T1细胞系上评估了在500°C下合成纳米复合材料的细胞毒性,以投资其对生物系统的影响,并获得了IC 50值在323 µg/mL左右。
