当具有整数自旋的粒子在低温和高密度下聚集时,它们会发生玻色-爱因斯坦凝聚 (BEC)。原子、磁振子、固态激子、表面等离子体极化子和与光耦合的激子表现出 BEC,由于大量占据相应系统的基态,因此产生高相干性。令人惊讶的是,最近发现光子在有机染料填充的光学微腔中表现出 BEC,由于光子质量低,这种情况发生在室温下。在这里,我们证明无机半导体微腔内的光子也会热化并经历 BEC。虽然人们认为半导体激光器是在热平衡之外运行的,但我们在系统中确定了一个热化良好的区域,我们可以清楚地区分激光作用和 BEC。半导体微腔是探索量子统计光子凝聚体的物理和应用的强大系统。实际上,光子 BEC 在比激光器更低的阈值下提供其临界行为。我们的研究还显示了另外两个优点:无机半导体中没有暗电子态,因此这些 BEC 可以持续存在;量子阱提供更强的光子-光子散射。我们测量了一个未优化的相互作用参数 (̃ g ≳ 10 –3),该参数足够大,可以了解 BEC 内相互作用的丰富物理特性,例如超流体光。
顺序硫醇甲基/-enene聚合,用于O 2-耐药的可抗压压力敏感粘合剂,具有改进的网络拓扑和相位行为Serkan Unal(Sabanci University,Istanbul,
M.Cristina diamantini coll:•Carlo A. Tugenberger,瑞士科学•Valerii Vinokur,Terra Quantum ag•Luca Gammaitoni,Perugia大学•Yavok Kopelevich,Yavok Kopelevich,Yavok Kopelevich,Universide de Campinas•Alexey Mironov,Svetlana Localovauctiie semickoductuctuctuctuctuctuctiire Inverave inverave in naviova Noguiera Leibniz学院德累斯顿•Nicola Poccia Leibniz Institute Dresden•Christoph Strunk,雷根斯堡大学
生物分子冷凝物通过大分子相分离形成,从而产生了界面描述的共存相。在这里,我们表征了由两种类型的RNA分子和聚乙烯乙二醇的三元混合物中的异型相互作用驱动的相位分离形成的界面结构。我们发现,富含嘌呤的RNA是通过强型异型相互作用驱动相分离的支架。相反,富含嘧啶的RNA分子是由较弱的异型相互作用定义的。它们作为吸附剂的作用,在脚手架的相位分离形成的共存相的界面上积聚并弄湿了界面。我们的计算预测,脚手架和吸附剂在接口处具有不同的非随机方向偏好。我们使用单分子超级分辨率成像测试了这些预测,该成像跟踪与RNA分子结合的荧光探针的运动。平行于界面的运动比垂直于界面的运动快。这些发现支持了关于界面运动各向异性的先前预测。
缺水是一个全球挑战,强调了有效水资源管理的重要性。太阳能剧照提供了一种经济有效的方法,可以将咸水转换为饮用水,但面临生产力的限制。本研究旨在通过使用不同的鳍材料和水深度修改来提高太阳静止生产率。使用计算流体动力学(CFD)模拟来评估四种情况下的热性能:在20 mm和40 mm的水深下的铜和铝鳍。分析了每种配置(MSS-I至MSS-IV)的关键参数,包括温度分布,摩擦量和流体速度。能量和驱动效率。与MSS-IV(8.02升),MSS-I(7.81升)和MSS-II(6.71升)相比,使用20 mm深度的MSS-III,表现出最高的每日生产率(8.33升)。MSS-III(60.10%)的能量效率最高,其次是MSS-IV(57.41%),MSS-I(55.22%)和MSS-II(52.18%)。MSS-III也表现出最高的充电效率(21.50%),MSS-I(17.15%),MSS-IV(16.43%)和MSS-II(14.12%)以后。这项研究强调了通过太阳剧照的特定设计修饰实现的热和能源效率的显着提高。MSS-III的较高性能归因于使用铜鳍和优化的深度,突出了材料选择和结构设计在提高太阳静止生产率方面的关键作用。这些发现对可持续水资源管理具有重要意义,强调了优化的太阳能仍然设计以应对水短缺挑战的潜力。
。cc-by-nc-nd 4.0国际许可证未通过同行评审获得证明)是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是此预印本的版权持有人(该版本发布于2024年7月11日。; https://doi.org/10.1101/2024.07.07.06.602359 doi:biorxiv Preprint
。cc-by-nc-nd 4.0国际许可证未通过同行评审获得证明)是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作
生物分子冷凝物通过结合相分离和多价大分子的可逆关联的过程形成。冷凝物可以是通过共存致密相和稀阶段定义的两阶段或多相系统。在这里,我们表明溶液离子可以在由固有无序蛋白或均聚糖RNA分子形成的冷凝物定义的共存阶段不对称地分配。我们的发现是通过直接测量蛋白质和RNA冷凝物共存阶段的阳离子和阴离子活性的直接测量的。在共存阶段之间对离子分配的不对称性随蛋白质序列,冷凝物类型,盐浓度和离子类型而变化。通过溶液离子不对称分配而建立的Donnan平衡产生了称为Donnan和Nernst电位的相间电势。我们的测量结果表明,冷凝水的相位势与膜结合细胞器的膜电位相同。相间电势量化了共存相的微环境相互不同的程度。重要的是,基于凝结物特异性相间电势,这是无膜体的膜状电势,我们认为冷凝水是储存电荷的中尺度电容器。相间电势导致在冷凝水界面处产生双层。这有助于解释对电化学活性的冷凝水界面的最新观察结果。
研究表明,凝聚物能够调节许多关键的生物过程,而这些凝聚物的异常活性与癌症等疾病的发生有关。这里我们证明缩合物修饰药物(c-mods)针对 CRC 中失调的 β-catenin 转录缩合物活性 • 诱导癌细胞中的 β-catenin 库缩合物,这与体外细胞杀灭相关 • 在包括 CRC 在内的 GI 衍生癌症中表现出强大的细胞毒活性 • 在 CRC 中观察到的体外细胞毒活性在体外转化为 CRC PDO/PDXO 模型 • 体内 c-mod 给药诱导肿瘤细胞中的 β-catenin 库并剂量依赖性下调 β-catenin 驱动的基因转录,这与大量的肿瘤药物水平相关 • 最后,长期服用 c-mods 会在细胞系和 PDX 衍生的 CRC 异种移植模型中产生显着的抗肿瘤活性,并且与 SoC 结合增强了这种活性 综上所述,这些结果表明 β-catenin c-mods 在体外、离体和体内对 CRC 产生强大的抗肿瘤活性,这与 β连环蛋白的定位和转录活性。这些发现凸显了通过冷凝调节靶向异常β-连环蛋白信号在治疗结直肠癌方面的潜力,从而解决这种疾病尚未满足的医疗需求。