完整作者列表: Jeon, Mike;华盛顿大学,材料科学与工程系 Lin, Guanyou;华盛顿大学,材料科学与工程系 Stephen, Zachary;华盛顿大学,材料科学与工程系 Vechey, Josey;华盛顿大学,材料科学与工程系 Singh, Manjot;华盛顿大学,材料科学与工程系 Revia, Richard;华盛顿大学 Newman, Amy;美国国家药物滥用研究所,成瘾研究中心,心理生物学科 Martinez, Diana;哥伦比亚大学 Zhang, Miqin;华盛顿大学,材料科学与工程系
[A] Strasbourg大学,CNRS,ICPEES UMR 7515,67087法国Strasbourg,法国[B] Strasbourg University of Strasbourg,CNRS,CNRS,ICS UPR 22,67000 Strasbourg,法国,法国,CNR,CNRS,CNRS,CP2M 51128,dille fille fille fille fille CNRS,IPCMS UMR 7504,F-67034法国Strasbourg,法国[E] Mulhouse大学,CNRS,CNRS,IS2M,UMR 7361,15 Jean Starcky,Mulhouse 68057,法国法国[F] Cemistry [f] Cemistry of Chemistry of Chemistry of Chemistry of Chemistry of Chemistry,Lomonosov Moscow State9999999999999999999999.361,119999。莫斯科,俄罗斯摘要
功能分级的材料(FGM)在无机热电学的背景下被广泛探索,但尚未在有机热电学中进行。在这里,研究了掺杂梯度对化学掺杂共轭聚合物的热电特性的影响。柜台的平面漂移用于中等电场中,用于在由寡聚侧链的聚噻吩中创建侧向掺杂梯度,并用2,3,5,5,6-Tetra-fuoro-tetra-tetra-fuoro-tetrace-tetrachachacyanoquinainoimeneimetimethane(f 4 tcnq)(F 4 TCNQ)。拉曼显微镜表明,在50μm宽的通道上的偏置电压仅为5 V,足以触发反逆漂移,从而导致掺杂梯度。分级通道的有效电导率随偏置电压降低,而观察到Seebeck系数的总体增加,可产生高达八倍的功率因数。动力学蒙特卡洛模拟分级纤维的模拟解释了在高电导率下,在高电导率下seebeck系数的掷骰,以及由于高掺杂剂浓度下的库仑散射而增加的迁移率。因此,发现FGM概念是提高尚未最佳掺杂的有机半导体的热电性能的一种方式,这可以减轻新材料的筛选以及设备的制造。
摘要 背景 抗体-药物偶联物 (ADC) 是治疗实体瘤和血液系统癌症的重要治疗选择。抗表皮生长因子受体 (EGFR) 抗体西妥昔单抗 (Cet) 用于治疗结直肠癌 (CRC)。通过用氨基双膦酸盐唑来膦酸 (ZA) 引发肿瘤细胞,然后通过丁酸嗜蛋白 (BTN) 家族成员(如 BTN3A1 和 BTN2A1)呈递异戊烯基焦磷酸,可引发抗 CRC V δ 2 细胞溶解性 T 淋巴细胞。阻碍 ZA 靶向 CRC 的一个主要缺点是氨基双膦酸盐的骨向性。方法 将 DNA 的磷酸基团标记到蛋白质的氨基上后,在咪唑存在下将 ZA 的磷酸基团与 Cet 的游离氨基连接起来。通过基质辅助激光解吸电离质谱和电感耦合等离子体质谱分析确认了 Cet-ZA ADC 的生成。在 Geltrex 圆顶盒中用化学定义的无血清培养基获得了 13 个 CRC 类器官。通过流式细胞术、结晶紫和细胞毒性探针测定以及图像分析检测 V δ 2 T 细胞对 CRC 类器官的增殖和细胞溶解活性激活。通过自动免疫染色、全玻片扫描和数字病理成像的计算机化分析进行免疫组织化学和定量 BTN3A1 或 BTN2A1 表达以及 CRC 中肿瘤浸润的 V δ 2 T 细胞数量。结果新型 ADC Cet-ZA 的生成率为 4.3,并显示出与未偶联抗体相似的反应性。更重要的是,患者来源的 CRC 类器官或 CRC 肿瘤细胞悬浮液在用 Cet-ZA 引发时可触发外周血和肿瘤浸润淋巴细胞中 V δ 2 T 细胞的扩增。此外,Cet-ZA 触发 V δ 2 T 细胞介导的 CRC 类器官杀伤。不仅在 CRC 类器官中检测到了 BTN3A1 和 BTN2A1 的表达,而且在 CRC 标本中也检测到了相当数量的肿瘤浸润 V δ 2 T 细胞。结论这些发现证明了 Cet-ZA ADC 可用于特异性靶向 CRC 类器官,并可能提出一种将氨基双膦酸盐递送至 EGFR + 实体瘤的新实验方法。
癌症仍然是全球一个重大的健康问题。最常见的化学治疗剂是小分子药物,通常与有毒的副作用和非特异性递送有关,从而导致治疗作用有限。本文介绍了基于脂质纳米颗粒进行癌症治疗的靶向药物输送系统的发展。脂质纳米颗粒由与白蛋白隐形涂层结合的脂质核心组成,并通过硫醇化学合成的一步方法将抗体靶向抗体。使用直径降低到87 nm的开发方法,能够封装小分子化合物的脂质纳米颗粒。对脂质纳米颗粒的细胞摄取研究,带有模型的药物尼罗红色红色表明,与游离药物相比,隐身涂层减少了非特异性细胞的摄取。此外,抗体结合导致了明显的细胞重定位。最后,结果表明,脂质纳米颗粒通过内吞途径进行细胞摄取。脂质纳米颗粒易于合成,在血清中稳定,并且具有用多功能针对受体的用途,使用抗体选择性地通过患病细胞选择性表达。因此,该系统可以减少癌症药物的毒性副作用,同时改善其对癌细胞的递送,从而增加治疗作用。
目的淀粉样变性运甲状腺素蛋白 (ATTR) 淀粉样变性是一种以进行性心肌病和/或多发性神经病为特征的致命疾病。AKCEA-TTR-L Rx (ION- 682884) 是一种配体结合的反义药物,旨在通过受体介导肝细胞(循环运甲状腺素蛋白 (TTR) 的主要来源)的摄取。反义药效团的增强递送有望提高药物效力并支持更低、更少频率的治疗给药。方法和结果与未结合的反义药物 inotersen 相比,AKCEA-TTR-L Rx 在人肝细胞培养物和表达突变的人类基因组 TTR 序列的小鼠中的效力分别提高了约 50 倍和 30 倍。这种效力的增加是由转基因 hTTR 小鼠模型中 AKCEA-TTR-L Rx 优先分布到肝脏细胞所支持的。进行了一项随机、安慰剂对照的 1 期研究,以评估健康志愿者中的 AKCEA-TTR-L Rx(ClinicalTrials.gov:NCT 03728634)。符合条件的参与者被分配到三个多剂量组(45、60 和 90 毫克)之一或一个单剂量组(120 毫克),然后随机分配 10:2(活性药物:安慰剂)在多剂量组中总共接受 4 次 SC 剂量(第 1、29、57 和 85 天)或在单剂量组中接受 1 次 SC 剂量。主要终点是安全性和耐受性;药代动力学和药效学是次要终点。所有随机参与者均完成治疗。未报告严重不良事件。在多剂量组中,AKCEA-TTR-L Rx 将 TTR 水平从基线降低至服用最后一剂 45、60 或 90 mg 后 2 周,平均值(SD)分别为 85.7%(8.0)、90.5%(7.4)和 93.8%(3.4),而合并安慰剂为 5.9%(14.0)(P < 0.001)。单剂量 120 mg AKCEA-TTR-L Rx 后,TTR 水平最大平均(SD)降低量为基线的 86.3%(6.5)。结论这些发现表明,通过肝细胞对 AKCEA-TTR-L Rx 的有效受体介导摄取,其药效得到提高,安全性和耐受性得到改善,并支持进一步开发 AKCEA-TTR-L Rx 用于治疗 ATTR 多发性神经病和心肌病。
摘要 TRAIL 或肿瘤坏死因子相关凋亡诱导配体一直是治疗致癌的化疗方法的主要前沿之一。尽管出现了 TRAIL 抗性癌细胞系,但它因其诱导细胞凋亡和为任何其他结合化疗药物提供特异性的独特特性而得到了广泛的研究。TRIAL 大大降低了剂量并增加了对癌细胞的特异性和靶向作用。它是癌细胞表面死亡受体 DR4 和 DR5 的特异性激动剂。正常细胞有更多的诱饵型死亡受体表达,这使得 TRAIL 对正常细胞的使用更安全。TRAIL-药物偶联系统由于其可能具有高协同潜力而一直受到关注,并可能为未来癌症特异性靶向治疗前沿打开大门。进行本项研究的目的是提供该分子与其他各种分子、RNA、配体和抗癌药物的不同结合的当前方案的简明扼要的汇总。此外,还介绍了 TRIAL 的可能输送系统,该系统可能具有重大的未来,以及这种特殊的癌症联合化疗方式的前景,尤其适用于结直肠癌。
•在学术上很强:拥有具有扎实的学术记录的相关博士学位。•研究经验:在进行研究方面表现出的经验,共轭聚合物合成和/或聚合物的物理交联经验被认为是加分。•自我激励:强烈自我驱动,具有出色的解决问题的技能,准备应对复杂的挑战。•动力和创造力:对创新充满热情,并能够在框外思考。•以细节为导向:对细节和对产生高质量工作的承诺的强烈关注。•协作:能够有效地独立工作和作为多学科团队的一部分。•有组织:出色的组织技能,能够有效地管理多个任务和项目。•出色的沟通者:具有英语的强大言语和书面沟通能力。
二维共轭聚合物(2DCP)是一类单层到多层晶体聚合物材料,并在两个正交方向上具有共轭链接,这些方向有望从膜到电力。当前的界面合成方法已成功地从动态价值化学(例如亚胺链接)中构造了2DCP。但是,由于可逆性不足,这些方法不适合制造可稳健的核定链接的2DCP。在这里,我们报告了通过两亲吡迪辅助辅助藻型界面多凝结连接的2DCPS的合成。合成是通过烷基定量的三吡啶定甲基吡啶来实现的,该三吡啶可以在水界面上自组装成有序的单层,并通过醛型型拓扑拓扑敏感性地与多功能醛进行原位与多功能醛反应。最终的2DCP显示出远距离分子排序,较大的侧向尺寸和良好的控制厚度。实验和理论分析都表明,在水界面上的预组装三甲基吡啶丁物单层显着提高了其凝结反应性,从而促进了在轻度条件下2DCP的合成。在渗透发电机中具有固有正电荷的2DCP的整体可提供出色的输出功率密度,达到51.4 w m-2,高于报告最多的2D纳米孔膜。
虽然近年来对有机热电聚合物的研究正在取得显着进步,但实现具有热电特性的单一聚合物材料和下一代自动可穿戴电子产品的可拉伸性是一项挑战的任务,并且仍然是尚未探索的领域。采用“共轭断裂器”的一种新的分子工程概念,以将可拉伸性赋予高度结晶的二基吡咯吡咯(DPP)基于基于的聚合物。A hexacyclic diindenothieno[2,3- b ]thiophene (DITT) unit, with two 4-octyloxyphenyl groups substituted at the tetrahedral sp3-carbon bridges, is selected to function as the conjugated breaker that can sterically hinder intermolecular packing to reduce polymers' crystallinity.因此,通过将晶体DPP单元与DITT共轭断路器聚合来开发一系列的供体 - 受体随机共聚物。通过控制单体DPP/DITT比率,DITT30达到了晶体/无定形区域的最佳平衡,在FECL 3后,表现出高达12.5μwm -1 K -2的特殊功率因子(PF)的价值;而,同时显示能够承受超过100%的应变的能力。更为明智的是,掺杂的Ditt30纤维具有出色的机械耐力,在200个伸展/释放周期以50%的应变为50%后,保留了其初始PF值的80%。这项研究标志着具有具有特殊热电特性的本质上可拉伸聚合物的开创性成就。