摘要 - 图像恢复旨在重建其损坏版本中的高质量图像,在许多情况下扮演重要角色。最近几年见证了图像恢复从卷积神经网络(CNN)转变为基于变压器模型的范式,因为它们可以建模远程像素相互作用的强大能力。在本文中,我们探讨了CNN在图像恢复中的潜力,并表明所提出的称为Convir的简单卷积网络体系结构可以与变压器对应物相比或更好。通过重新审查高级图像恢复算法的特征,我们发现了几个关键因素,导致恢复模型的性能提高。这激发了我们基于廉价的卷积操作员开发一个新颖的网络来修复图像。全面的实验表明,在五个代表性的图像恢复任务上,我们的convir在20个基准数据集中提供了最先进的性能,包括图像去悬式,图像运动/defocus deblurring,图像驱动和图像删除。
我们考虑具有在空间维度中对称的2D结构特征的卷积神经网络(CNN)。这种网络在为顺序推荐问题以及RNA和蛋白质序列的二级结构推理问题以及二级结构推理时产生了对成对关系的建模。我们开发了一种CNN体系结构,该体系结构生成并保留了网络卷积层中的对称结构。我们提出了卷积内核的参数化,该卷积内核产生了更新规则,以在整个培训过程中保持对称性。我们将此体系结构应用于顺序推荐问题,RNA二级结构推断问题和蛋白质触点图预测问题,表明使用较少数量的机器参数可产生对称结构化网络的改进结果。
摘要 — 近年来,神经科学家一直对脑机接口 (BCI) 设备的开发很感兴趣。运动障碍患者可能受益于 BCI 作为一种交流方式和运动功能恢复。脑电图 (EEG) 是评估神经活动最常用的方法之一。在许多计算机视觉应用中,深度神经网络 (DNN) 显示出显着的优势。为了最终使用 DNN,我们在此介绍一种浅层神经网络,它主要使用两个卷积神经网络 (CNN) 层,具有相对较少的参数并能快速从 EEG 中学习频谱时间特征。我们将此模型与其他三种具有不同深度的神经网络模型进行了比较,这些模型应用于适合患有运动障碍和视觉功能下降患者的闭眼状态心算任务。实验结果表明,浅层 CNN 模型优于所有其他模型,并实现了 90.68% 的最高分类准确率。它在处理跨主题分类问题时也更加强大:准确率标准差仅为 3%,而传统方法的准确率标准差为 15.6%。
多类分类对于各种应用程序非常感兴趣,例如,它是计算机视觉中的常见任务,其中一个需要将图像分为三个或更多类。在这里,我们提出了一种基于量子卷积神经网络来解决多类分类问题的量子机学习方法。相应的学习过程是通过TensorFlowquantum作为混合量子 - 古典(变化)模型实现的,其中量子输出结果通过优化量子电路的参数优化跨熵损失的随后最小化量符号。我们在这里的构思改进包括量子感知器的新模型和量子电路的优化结构。我们使用建议的方法来解决MNIST数据集的4类分类问题,使用八个量子位用于数据编码和四个Ancilla Qubits;三级分类问题已经获得了先前的结果。我们的结果表明,解决方案的准确性类似于具有相当数量的可训练参数的经典卷积神经网络。我们期望我们的发现将为使用量子神经网络朝着解决NISQ时代及其他地区的相关问题提供新的一步。
摘要:运动想象 (MI) 脑机接口 (BCI) 因其在用户意图和任务执行之间直观匹配的特点而被广泛应用于各种应用。将干脑电图 (EEG) 电极应用于 MI BCI 应用可以解决许多限制并实现实用性。在本研究中,我们提出了一种多域卷积神经网络 (MD-CNN) 模型,该模型使用多域结构学习特定于主体和依赖于电极的 EEG 特征,以提高干电极 MI BCI 的分类准确率。所提出的 MD-CNN 模型由三个域表示(时间、空间和相位)的学习层组成。我们首先使用公共数据集评估了所提出的 MD-CNN 模型,以确认多类分类的分类准确率为 78.96%(机会水平准确率:30%)。之后,10 名健康受试者参与并在两个阶段(干电极和湿电极)执行了三类与下肢运动(步态、坐下和休息)相关的 MI 任务。因此,与仅使用单个域的传统分类器(FBCSP、EEGNet、ShallowConvNet 和 DeepConvNet)相比,所提出的 MD-CNN 模型使用三类分类器实现了最高的分类准确度(干电极:58.44%;湿电极:58.66%;偶然水平准确度:43.33%),并且两种电极类型之间的准确度差异最小(0.22%,d = 0.0292)。我们期望所提出的 MD-CNN 模型可用于开发具有干电极的稳健 MI BCI 系统。
我们在 2019 年预测分析大赛 (PAC) 中名列第三,通过 T1 加权 MRI 脑部图像预测年龄,平均绝对误差 (MAE) 达到 3.33 岁。我们的方法结合了七种算法,当特征数量超过观测值数量时,这些算法可以生成预测,特别是两个版本的最佳线性无偏预测器 (BLUP)、支持向量机 (SVM)、两个浅层卷积神经网络 (CNN) 以及著名的 ResNet 和 Inception V1。集成学习是通过在训练样本的保留子集中的线性回归估计权重而得出的。我们进一步评估并确定了可能影响预测准确性的因素:算法的选择、集成学习以及用作输入/MRI 图像处理的特征。我们的预测误差与年龄相关,年龄较大的参与者的绝对误差更大,这表明需要增加该子群的训练样本。我们的研究结果可用于指导研究人员建立健康个体的年龄预测指标,可用于研究和临床,作为疾病状况的非特异性预测指标。
近年来,解码脑信号引起了广泛关注并找到了许多应用,例如脑机接口,利用用户的意图与控制外部设备进行通信,这是一个新兴领域,具有改变世界的潜力,具有从康复到人类增强的多种应用。话虽如此,脑信号分析,特别是脑电图脑信号分析,是一项具有挑战性的任务。随着深度学习在仅使用原始数据解决问题方面取得的进步和成就,近年来很少有人尝试应用深度学习来处理脑电图和其他类型的脑信号。在本研究中,我们提出了一种新的损失函数,称为 DeepCSP,将经典的公共空间模式扩展为非线性可微模块,作为损失函数,以端到端的方式在原始信号上强制属于不同类别的脑电信号的线性可分潜在表示,而无需执行大量的特征工程。随着最近深度学习方法对任意结构图的推广以及引入的损失,我们提出了两种轻量级模型来解码 EEG 信号,并进行了实验以展示它们的性能。
在印度尼西亚,自上次冠状病毒大流行以来,自主机器人的发展已经大量出现。A-UV消毒机器人的目的是在关键区域(例如医院)净化细菌和病原体。由于微小的生物可能难以控制,因此没有让人接触的预期是A-UV消毒机器人的其他目的之一。但是,自主机器人的系统开发是优先事项,机器人可以在到达指定位置时提供无碰撞障碍物和目标锁。在这项研究中,提出了两项主要贡献来开发自动驾驶机器人:1)卷积神经网络(CNN)算法,以了解从数据集中锁定区域周围的潜力,以确保操作过程中无碰撞。2)原始设计,以确保具有几乎全向紫外线的自主机器人的紧凑性。我们将“盒子”作为障碍物和“标志停止”设计为CNN数据集中的目标。培训和验证绩效的绩效已确认为97%和99%,损失为0.3%。机器人原型也在大小为2.1 x 3 m的工作区内开发和测试。机器人原型成功执行了所需的任务。
图2。在1980 - 2000年期间通过每日降雨的气候学的输入(左)和目标(右)域的示意图。左图上的黑线显示目标域,而输入域则是整个地图。目标域上:红点是图6和10的三个说明点。从北到南,有巴黎,瑞士阿尔卑斯山和罗马的高点(2247米)。三个蓝色框是第3.2.1节中用于SAL评估的三个区域:北部地区,以比利时,塞文尼斯地区(法国东南)和迪纳尔·阿尔卑斯山(Dinaric Alps)为中心。
摘要。运动图像分类是一项具有挑战性的任务,涉及多种类型的运动,在功能识别和次优检测结果方面遇到困难。这项研究采用了四个验证的模型,即残留网络50(Resnet-50),EfficityNet B7,密集连接的卷积网络121(Densenet-121),您只能查看一次版本8(Yolov8),以解决对100个不同运动图像类别进行分类的问题。数据集包含12200张体育图像,这是这项研究的强大实验基础。通过比较他们的表现,可以发现Resnet-50在训练集中表现出出色的性能,在验证集中的准确度为90.80%,88.75%的精度为88.75%。有效网络B7模型的训练精度为37.45%,推理的精度为62.42%。令人印象深刻的性能可能是由于其在处理特定的运动图像分类任务时的表示功能有限。densenet-121在培训中获得了71.791%的准确性,验证集获得了86.211%。与EfficityNet B7相比,其性能更好,这表明密集的连通性雅更适合提取图像特征。此外,Yolov8n模型在训练集的平均准确度中提供了出色的性能,验证集的平均精度为96.60%。这些结果展示了在运动图像分类和检测中yolov8n的圆润性能。总而言之,这项研究通过比较运动图像分类中不同算法的性能来解决解决复杂图像分类问题的宝贵见解。了解这些各种算法的优势和缺点对于更深入地理解图像分类任务和指导未来的研究努力至关重要。