背景:基于运动图像(MI)的脑部计算机界面(BCIS)在神经护理领域具有有希望的潜力。然而,由于MI任务期间活跃大脑区域的个体变化,解码MI EEG信号的挑战需要改善分类性能以进行实际应用。新方法:本研究提出了一个基于自我注意力的卷积神经网络(CNN),并结合使用时间频率的常见空间模式(TFCSP)来增强MI分类。由于培训数据的可用性有限,因此采用了数据增强策略来扩大MI EEG数据集的规模。基于自我注意力的CNN经过训练,可以自动从EEG SIG NALS中提取时间和空间信息,从而可以通过计算EEG通道权重来选择活动通道。TFCSP进一步实施,以从EEG数据中提取多尺度的时空空间。最后,从TFCSP得出的EEG特征与基于自我注意的CNN进行MI分类的脑电图串联。结果:提出的方法将在两个公共访问数据集(BCI竞争IIA和BCI竞争III IIII IIIA)上进行评估,分别得出79.28%和86.39%的平均准确性。结论:与最先进的方法相比,我们的方法实现了卓越的分类导致准确性。基于自我注意力的CNN与TFCSP结合可以充分利用脑电图形成的时空空间,并增强分类性能。
摘要。语音识别是计算机与人类之间的一种交流方式,是计算语言学或自然语言处理的一个分支,有着悠久的历史。自动语音识别 (ASR)、文本转语音 (TTS)、语音转文本、连续语音识别 (CSR) 和交互式语音响应系统是解决该领域问题的不同方法。性能的提高部分归因于深度神经网络 (DNN) 对语音特征中复杂相关性进行建模的能力。在本文中,与使用循环神经网络 (RNN) 处理语音等序列数据的传统模型不同,随着深度网络中不同架构的出现以及传统神经网络 (CNN) 在图像处理和特征提取中的良好性能,CNN 在其他领域的应用得到了发展。结果表明,可以通过 CNN 提取波斯语的韵律特征,对短文本进行语音分段和标记。通过使用 128 和 200 个滤波器作为 CNN 和特殊架构,检测率的误差为 19.46,并且比 RNN 更节省时间。此外,CNN 简化了学习过程。实验结果表明,CNN 网络可以成为各种语言语音识别的良好特征提取器。
本文提出了一种基于新型脑磁图 (MEG) 数据集 CiNet 的新型多通道情绪分类方法。本文属于脑机接口 (BCI) 研究领域,因为它使用大脑活动数据来识别人类情绪。它应该是一个有价值的贡献和对比,因为大多数 BCI 研究使用脑电图 (EEG) 数据,主要来自 DEAP 数据集。使用卷积神经网络 (CNN) 和循环神经网络 (RNN) 的组合,系统将分析高保真数据,以尝试识别受试者的情绪状态。CNN 对空间信息进行编码,而 RNN 跟踪随时间的变化。每个部分都单独评估,也结合评估,以确定每个分析方面的贡献。这些模型变体在原始 MEG 信号和从信号中提取的功率谱密度 (PSD) 上进行了评估。实验结果表明,最佳模型是在原始信号数据上训练的 CNN+RNN 组合,在效价/唤醒分类任务上实现了 56.5% 的平均准确率。
摘要 EEG(脑电图)信号可用于判断患者是否会癫痫发作。事实证明,EEG 在癫痫发作的早期检测中至关重要。为了使用 EEG 信号检测癫痫发作,已经开发了几种机器学习模型。然而,其他人声称传统的基于规则的方法同样有效。本研究旨在反驳这一说法,并比较基于规则的技术和机器学习方法的性能。由于神经网络与人脑非常相似,因此被选为机器学习方法。数据集来自开源、免费使用的坦普尔大学医院异常 (TUAB) EEG 语料库。在使用两种方法对数据进行训练和测试后,基于规则的技术的准确率为 85.16%,而神经网络技术的准确率为 98.91%。
摘要从互联网技术和通信技术的快速发展中受益,行业互联网迅速上升。随着互联网技术的快速发展,网络安全变得越来越突出。此外,入侵攻击会导致系统故障或降低系统性能,因此入侵检测是确保系统可靠性的重要方面。针对运营过程中工业互联网面临的巨大安全风险,本研究提出了一种基于卷积神经网络的工业互联网故障检测模型,该模型最初通过卷积神经网络筛选了卷积神经网络的入侵攻击,并引入了粒子群群群优化算法,以识别筛查的入侵攻击。The experimental results demonstrated that when the training set size was 1600, the accuracy rates of random forest, K-mean clustering algorithm, convolutional neural network and improved convolutional neural network algorithms were 93.2%, 94.9%, 96.3%, and 98.6%, respectively, and the false alarm rates were 6.9%, 5.0%, 3.8%, and 2.1%, respectively.随机森林,K均值聚类,卷积神经网络和改进的卷积神经网络算法的均方根误差值分别为0.32、0.22、0.18和0.11。当训练集大小为800时,相应的F1值为0.81、0.84、0.87和0.98。该研究的结果表明,改进的算法模型优于其他策略,为在工业互联网中的应用提供了坚实的基础。
摘要 - 纠结神经网络(CNN)是计算机视觉中的流行模型,具有充分利用数据相关信息的优势。但是,如果数据或模型的给定维度太大,CNN的学习效率很大。量子卷积神经网络(QCNN)为使用量子计算环境或提高现有学习模型的性能的方向提供了解决问题的新解决方案。第一项研究将提出一个模型,以通过将CNN的结构应用于量子计算环境,从而有效地解决量子物理和化学中的分类问题。研究还提出了可以使用多尺度纠缠重归于ANSATZ(MERA)的O(log(log(n))深度计算的模型。第二项研究介绍了一种通过在现有计算机视觉中使用的CNN学习模型中添加量子计算来提高模型性能的方法。该模型也可以在小量子计算机中使用,可以通过在CNN模型中添加量子卷积层或用卷积层替换混合学习模型。本文还验证了QCNN模型是否能够通过使用Tensorflow量子平台使用MNIST数据集进行训练与CNN相比,是否能够有效学习。
摘要:深层卷积神经网络,尤其是具有较大内核的大型模型(3 3或更多),已经在单像超分辨率(SISR)任务中取得了重大进展。但是,此类模型的大量计算足迹阻止了它们在实时,资源约束的环境中的影响。相反,1 1卷积具有实质性的计算效率,但在汇总局部空间表示方面挣扎,这是SISR模型的重要能力。响应这种二分法,我们建议统一3 3和1 1个内核的优点,并利用其轻巧的SISR任务的巨大潜力。具体,我们提出了一个简单而有效的1 1 1卷积网络,称为基于Shift-Conv的网络(SCNET)。通过合并无参数的空间移动操作,完全1 1卷积网络配备了强大的表示能力和令人印象深刻的计算效率。广泛的实验表明,尽管SCNET完全1 1 1卷积结构,但始终匹配甚至超过了采用常规卷积的现有轻质SR模型的性能。可以在https://github.com/aitical/scnet上找到代码和验证的模型。
使用 c X 和基于 KL 散度的校准方法计算激活 Q 尺度 l act S 计算当前层激活的 Q 因子:1 / ( ) llll act A act MSSSS − Ω = 更新偏差项:lll act BSB = End for 计算最后一个卷积层的反量化因子:1/ l N deQ act MS =
摘要 目的。迄今为止,在基于 EEG 的脑机接口中,黎曼解码方法与深度卷积神经网络的全面比较仍未在已发表的研究中出现。我们使用 MOABB(所有 BCI 基准之母)来解决这一研究空白,将新型卷积神经网络与最先进的黎曼方法进行比较,这些方法涉及广泛的 EEG 数据集,包括运动想象、P300 和稳态视觉诱发电位范式。方法。我们使用 MOABB 处理管道系统地评估了卷积神经网络(特别是 EEGNet、浅层 ConvNet 和深度 ConvNet)与成熟的黎曼解码方法的性能。该评估包括会话内、跨会话和跨受试者方法,以提供模型有效性的实用分析,并找到在不同实验设置中表现良好的整体解决方案。主要结果。我们发现在会话内、跨会话和跨受试者分析中,卷积神经网络和黎曼方法之间的解码性能没有显着差异。意义。结果表明,在使用传统的脑机接口范式时,在许多实验环境中,CNN 和黎曼方法之间的选择可能不会对解码性能产生重大影响。这些发现为研究人员提供了灵活性,可以根据诸如易于实施、计算效率或个人偏好等因素选择解码方法。
摘要 偏置场作为一种低频平滑信号,对磁共振(MRI)图像具有一定的破坏作用,是医生诊断和图像处理(如分割、纹理分析、配准等)的主要障碍。在分析受损的MRI图像之前,需要一个预处理步骤来校正图像中的偏置场。与传统基于信号模型和先验假设的偏置场去除算法不同,深度学习方法不需要对信号和偏置场进行精确建模,也不需要调整参数。经过深度神经网络训练大训练集后,输入带有偏置场的MRI图像,输出校正后的MRI图像。本文提出以log-Gabor滤波器组获得的多个频带上的偏置场局部特征图像和原始图像作为输入,通过深度可分离卷积神经网络对脑MRI图像的偏置场进行校正,并使用残差学习和批量归一化来加速训练过程并提高偏置场校正性能。我们的训练模型在 BrainWeb 模拟数据库和 HCP 真实数据集上进行了测试,定性分析的结果表明我们的训练模型取得了比传统最先进的 N4 和 NIMS(非迭代多尺度)方法更好的性能。关键词:磁共振成像;强度不均匀性校正;偏置场;Log-Gabor 滤波器;深度学习