随着个体通过数字平均值的显着相互作用的显着增加,图中节点的聚类已成为分析大型和复杂网络的一种基础方法。在这项工作中,我们提出了深层的位置模型(DEEPLPM),这是一种端到端的生成聚类方法,将广泛使用的潜在位置模型(LPM)与图形卷积网络(GCN)编码策略相结合。此外,还引入了一种原始估计算法,以通过变异推理和使用随机梯度下降进行图形重建来整合后聚类概率的明确优化。在模拟场景上进行的数值实验突出了DeepLPM自养生的能力,以选择簇数量的较低限制,这表明其聚类能力与最先进的方法相比。最后,DEEPLPM进一步应用于Merovingian Gaul的教会网络和引文网络Cora,以说明探索大型且复杂的现实世界网络的实际兴趣。
Transformer是一种具有自我注意力机制的深度学习模型,结合了卷积神经网络(CNN),已成功应用于运动成像(MI)脑部计算机界面(BCI)中的解码脑电图(EEG)信号。然而,EEG的极其非线性的非平稳性特征限制了深度学习方法的效果和效率。此外,多种受试者和实验会议都会影响模型适应性。在这项研究中,我们提出了一种基于本地和全球卷积变压器分类的方法。将局部变压器编码器组合在一起,以动态提取时间特征并弥补CNN模型的缺点。获得了所有通道的空间特征和半球的差异以提高模型的鲁棒性。为了获取足够的时间空间特征表示,我们将全局变压器编码器和密集连接的网络结合在一起,以改善信息流和重复使用。为了验证拟议模型的性能,设计了三种包括会议,跨课程和两协议的情况。在实验中,与当前的最新模型相比,在三种情况下,提出的方法在三种情况下分别实现了高达1.46%,7.49%和7.46%的精度。在BCI竞争IV 2A数据集中,拟议的模型还分别为跨课程和两场比赛的情况提高了2.12%和2.21%。结果证实了所提出的方法可以从EEG信号中提取更丰富的MI特征,并改善BCI应用程序中的性能。
摘要 - 深度卷积神经网络(DCNN)已被广泛研究以在生物医学图像处理领域进行不同类型的检测和分类。其中许多产生的结果与放射科医生和神经病学家相比,与之相当甚至更好。但是,从此类DCNN中获得良好结果的挑战是大型数据集的要求。在本研究中,本研究介绍了一种独特的基于单模型的方法,用于对小数据集进行分类。使用了一个称为regnety-3.2g的修改后的DCNN,与正则化掉落和下降块集成在一起,以防止过度拟合。此外,一种改进的增强技术称为randaugment来减轻小数据集的问题。最后,MWNL(多加权的新损失)方法和端到端CLS(累积学习策略)用于解决样本规模不平等的问题,分类中的复杂性以及降低样本对培训的影响。索引术语 - 脑部肿瘤,深度学习,机器学习,数据增强,卷积神经网络,MRI
摘要 — 人类情感与多个分布式大脑区域密切相关,并且区域之间存在功能联系。然而,如何抽象区域级信息以提高脑电图 (EEG) 情感识别性能尚未得到很好的考虑。为了解决这个问题,我们提出了一种新颖的自适应分层图卷积网络 (AHGCN),它包括 EEG 通道的基本通道级图和大脑区域的区域级图。与以前的方法不同,我们提出了一种自适应池化操作来自动划分大脑区域而不是手动定义它们。为了捕捉大脑区域或 EEG 通道之间的内在功能联系,我们设计了一个门控自适应图卷积操作。此外,我们开发了一个图解池化操作来整合区域级图和通道级图以提取更多用于分类的判别特征。在两个广泛使用的数据集上的实验表明,我们提出的方法优于许多最先进的 EEG 情感识别方法,并且可以找到一些有趣的 EEG 通道组合。索引词——EEG 情绪识别、图卷积神经网络 (GCNN)、图池化
摘要——疼痛是一种综合现象,伴随着大脑中感觉和情境过程的动态相互作用,通常与可检测到的神经生理变化有关。大脑活动记录工具和机器学习技术的最新进展引起了用于客观和基于神经生理学的疼痛检测的神经计算技术的研究和开发。本文提出了一种基于脑电图 (EEG) 和深度卷积神经网络 (CNN) 的疼痛检测框架。通过招募 10 名慢性背痛患者,研究了 CNN 用于区分诱发疼痛状态和静息状态的可行性。实验研究分两个阶段记录 EEG 信号:1. 运动刺激 (MS),通过执行预定义的运动任务来诱发背痛;2. 视频刺激 (VS),通过观看一组视频片段来诱发背痛感知。多层 CNN 对静息状态和疼痛状态下的 EEG 片段进行分类。这种新方法具有高性能和稳定性,因此对于构建强大的疼痛检测算法具有重要意义。我们的方法的受试者工作特征曲线下面积 (AUC) 分别为 MS 和 VS 中的 0.83 ± 0.09 和 0.81 ± 0.15,高于最先进的方法。还分析了亚脑区,以检查与疼痛检测相关的不同脑拓扑结构。结果表明,MS 引起的疼痛
工程学院,穆罕默迪亚大学马朗,马朗,印度尼西亚B工程学院,加德贾·马达大学,Yogyakarta,印度尼西亚Yogyakarta,计算机和数学科学学院共振成像(MRI)是一种身体感测技术,可以产生器官和组织状况的详细图像。 与脑肿瘤特别相关,可以使用图像检测技术分析所得的图像,以便可以自动对肿瘤阶段进行分类。 检测脑肿瘤需要高度的准确性,因为它与医疗行动和患者安全的有效性有关。 到目前为止,卷积神经网络(CNN)或其与GA的组合取得了良好的结果。 因此,在这项研究中,我们使用了类似的方法,但具有VGG-16体系结构的变体。 VGG-16变体通过修改辍学层(使用SoftMax激活)来减少过度拟合并避免使用大量超参数来增加16层。 我们还尝试使用增强技术来预测数据限制。 使用数据进行癌症成像存档(TCIA)的实验 - 分子脑肿瘤数据(Rembrandt)的存储库包含130例具有不同疾病,成绩,种族和年龄为520张图像的患者的MRI图像。 肿瘤类型为Gliom A,图像分别分为II,III和IV级,分别为226、101和193图像。 用于培训和测试目的的数据将数据划分为68%和32%。 2022。工程学院,穆罕默迪亚大学马朗,马朗,印度尼西亚B工程学院,加德贾·马达大学,Yogyakarta,印度尼西亚Yogyakarta,计算机和数学科学学院共振成像(MRI)是一种身体感测技术,可以产生器官和组织状况的详细图像。 与脑肿瘤特别相关,可以使用图像检测技术分析所得的图像,以便可以自动对肿瘤阶段进行分类。 检测脑肿瘤需要高度的准确性,因为它与医疗行动和患者安全的有效性有关。 到目前为止,卷积神经网络(CNN)或其与GA的组合取得了良好的结果。 因此,在这项研究中,我们使用了类似的方法,但具有VGG-16体系结构的变体。 VGG-16变体通过修改辍学层(使用SoftMax激活)来减少过度拟合并避免使用大量超参数来增加16层。 我们还尝试使用增强技术来预测数据限制。 使用数据进行癌症成像存档(TCIA)的实验 - 分子脑肿瘤数据(Rembrandt)的存储库包含130例具有不同疾病,成绩,种族和年龄为520张图像的患者的MRI图像。 肿瘤类型为Gliom A,图像分别分为II,III和IV级,分别为226、101和193图像。 用于培训和测试目的的数据将数据划分为68%和32%。 2022。工程学院,穆罕默迪亚大学马朗,马朗,印度尼西亚B工程学院,加德贾·马达大学,Yogyakarta,印度尼西亚Yogyakarta,计算机和数学科学学院共振成像(MRI)是一种身体感测技术,可以产生器官和组织状况的详细图像。与脑肿瘤特别相关,可以使用图像检测技术分析所得的图像,以便可以自动对肿瘤阶段进行分类。检测脑肿瘤需要高度的准确性,因为它与医疗行动和患者安全的有效性有关。到目前为止,卷积神经网络(CNN)或其与GA的组合取得了良好的结果。因此,在这项研究中,我们使用了类似的方法,但具有VGG-16体系结构的变体。VGG-16变体通过修改辍学层(使用SoftMax激活)来减少过度拟合并避免使用大量超参数来增加16层。我们还尝试使用增强技术来预测数据限制。使用数据进行癌症成像存档(TCIA)的实验 - 分子脑肿瘤数据(Rembrandt)的存储库包含130例具有不同疾病,成绩,种族和年龄为520张图像的患者的MRI图像。肿瘤类型为Gliom A,图像分别分为II,III和IV级,分别为226、101和193图像。用于培训和测试目的的数据将数据划分为68%和32%。2022。我们发现VGG-16对脑肿瘤图像分类更有效,精度高达100%。关键字 - 分类; MRI;脑肿瘤;神经胶质瘤,CNN; VGG-16。手稿于2022年1月11日收到; 3月23日修订2022; 4月19日接受出版日期,2022年9月30日。国际信息学可视化杂志均在创意共享归因 - 归属共享下的许可。
代码异味是指源代码中任何违反设计原则或实现的症状或异常。及早发现不良代码异味可以提高软件质量。如今,几种人工神经网络 (ANN) 模型已用于软件工程的不同主题:软件缺陷预测、软件漏洞检测和代码克隆检测。使用 ANN 模型时,无需了解数据来源,但需要大量训练集。数据不平衡是人工智能技术在检测代码异味方面面临的主要挑战。为了克服这些挑战,本研究的目标是基于一组 Java 项目,提出具有合成少数过采样技术 (SMOTE) 的深度卷积神经网络 (D-CNN) 模型来检测不良代码异味。我们考虑了四个代码异味数据集,即 God 类、数据类、特征嫉妒和长方法,并根据不同的性能指标对结果进行了比较。实验结果表明,所提出的具有过采样技术的模型可以为代码异味检测提供更好的性能,并且当使用更多数据集训练模型时,预测结果可以进一步改善。此外,更多的时期和隐藏层有助于提高模型的准确性。
神经网络的设计受人脑的工作机制的启发,此后在各个领域取得了巨大的成功。心理学仍然旨在更好地了解人脑,但计算机科学努力增强对神经网络的理解。神经网络研究的主要目标是开发能够执行与人脑相似的任务,而不是重新创建它的模型。有趣的是,尽管没有明确设计为此目的,但神经网络倾向于表现出比预期的更像人类的行为。特别是,最近的发现表明,CNN可能表现出感知组织的格式塔定律的某些方面[1],这些方面解释了人脑如何解释复杂的视觉刺激,尽管可能会受到某些阈值和局限性的影响。先前探索的神经网络体系结构的狭窄范围,其数据集有限和实验不足,因此需要进行更详细的研究。我们关注的是闭合原理,该原理指出,当零件被遮挡或碎片时,人的大脑自然填补了将数字视为完整批发的空白。我们提出了一个专门设计的数据集,该数据集旨在检查各种基于心理的透视仪的关闭,并在广泛的CNN中进行实验,以研究其与该原则的一致性。我们的工作提供了有关CNN有关关闭的全面分析,确定了限制和阈值,这些限制和阈值定义了其在逐渐操纵的刺激类别上执行闭合时的可用性。
自闭症谱系障碍 (ASD) 是一种常见的发育障碍,其症状和严重程度差异很大,使得自闭症的诊断成为一项具有挑战性的任务。现有的使用大脑连接特征对自闭症进行分类的深度学习模型由于特征表示能力有限和可解释性不足,在多中心数据上仍然表现不佳。鉴于图卷积网络 (GCN) 在学习大脑连接网络的判别性表示方面表现出色,本文提出了一个可逆动态 GCN 模型来识别自闭症并研究与该疾病相关的连接模式的改变。为了从模型中选择可解释的特征,在整个网络中引入了可逆块,我们能够从网络的输出中重建输入的动态特征。采用连接特征的预筛选来减少输入信息的冗余,并添加全连接层进行分类。对 867 名受试者的实验结果表明,我们提出的方法实现了卓越的疾病分类性能。它为大脑连接分析提供了可解释的深度学习模型,在研究大脑相关疾病方面具有巨大潜力。
到目前为止,卷积神经网络 (CNN) 一直是视觉数据的实际模型。最近的研究表明,(Vision) Transformer 模型 (ViT) 可以在图像分类任务上实现相当甚至更优异的性能。这就提出了一个核心问题:Vision Transformer 如何解决这些任务?它们是像卷积网络一样工作,还是学习完全不同的视觉表示?通过分析图像分类基准测试中 ViT 和 CNN 的内部表示结构,我们发现这两种架构之间存在显著差异,例如 ViT 在所有层上都有更统一的表示。我们探索了这些差异是如何产生的,发现了自注意力机制发挥的关键作用,它可以实现全局信息的早期聚合,而 ViT 残差连接则可以将特征从较低层强烈传播到较高层。我们研究了对空间定位的影响,证明 ViT 成功地保留了输入的空间信息,并且不同分类方法的效果显著。最后,我们研究(预训练)数据集规模对中间特征和迁移学习的影响,并最后讨论与 MLP-Mixer 等新架构的连接。