核子的结构是多维的,取决于组成部分的横向动量,空间几何形状和极化。可以使用在超疗养重的沉重离子碰撞中产生的高能光子来研究这种结构。提出了在大动量转移下具有两个喷气式相互作用的两种喷气式事件的方位角角相关性的第一个测量,这一过程被认为对基本的核gluon偏振敏感。本研究使用在效率上的超递铅铅碰撞碰撞的数据样本。02 TEV,对应于0的集成光度。38 nb - 1,在LHC的CMS实验中收集。发现,随着dijet横向动量的增加,两个射流横向动量向量的总和与差之间的相关性的第二个谐波被发现是正的。成功地描述了HERA实验的广泛质子散射数据,无法描述观察到的相关性,这表明存在Gluon极化效应。
为了找到一个可解释的解决方案,需要一个简单而有效的模型来在许多会话中共享行为相关的神经变化。同样,动物的行为不仅受当前任务的影响,也受动物以前试验的经验的影响。例如,[10]发现小鼠的决策表现出在数十到数百次试验中持续存在的内部状态,这可以通过隐马尔可夫模型(HMM)有效地建模。这些潜在状态可以在不同动物和实验会话中重现。许多神经科学实验表现出由这种可重现的潜在状态引起的试验间行为相关性。除了对会话间神经相似性进行建模之外,明确考虑连续试验中的这些行为相关性还可以潜在地提高神经解码性能。在这项工作中,我们开发了两种互补的方法来利用这些神经和行为相关性来改进神经解码。对于神经数据,我们采用多会话降秩模型,该模型在跨会话时具有相似的神经活动时间模式,同时保留会话特定的差异以适应个体差异。对于行为数据,我们使用多会话状态空间模型从多个会话中动物行为的试验间相关性中学习潜在行为状态。然后使用这些学习到的神经和行为表征来改进单次试验、单会话解码器。与现有的通过复杂黑盒模型在会话间共享数据的深度学习方法不同,我们的模型简单、可解释性强且易于拟合。我们使用来自国际脑实验室 [ 11 , 12 ] 的小鼠神经像素记录来评估我们的神经和行为数据共享模型,其中包括 433 个会话和 270 个大脑区域。结果显示,在不同行为任务中解码准确率有所提高。我们的方法在计算上是高效的,使我们能够创建与行为相关的时间尺度的全脑图,并识别与每个行为任务相关的关键神经元。
电气是一类不寻常的材料,其中间质阴离子电子(IAES)被捕获在带正电荷的晶格框架的有序腔中。与调用离子晶体相反,在电气中,仅由晶体中的原子轨道引起的占用能带(BRS)的占用能带的组合不应分解,但必要性应包括以电气位置为中心的准原子轨道的BR。1,限制在阴离子空位位置的此类电子的波函数表现出独特的双重性,结合了由动能与库仑相互作用之间的竞争引起的强烈定位和空间范围。这种竞争导致实现了复杂的多体基础状态。在某些情况下,原子和间质电子子系统之间的耦合非常弱,以至于可以单独考虑后者,从而为纯量子电子系统中现象的实现和研究创造了一个显着的平台。2,3,这种治疗
我们报告了一个由无限层镍元的启发的决定性量子蒙特卡洛研究,重点是层间杂交在3 d x 2-2-y 2轨道之间的影响,该杂交源自ni(或ni和o)在一个层中源自ni(或ni和o),在一个层和稀有(r)5 d orbitals in ni层中,ni and ni and and and and the ni and the and and and and and and and and and and libit。对于平均两层之间共有一个电子的填充,层间杂交会导致Ni层中的“自掺杂”孔,并且缺乏抗磁磁体排序,而是旋转密度和电荷密度条纹状状态的外观。随着层间杂交的增加,Ni和R层都会产生抗铁磁相关性,即使两个单独的层都远离半填充。用于中间范围内的杂交,大致可与内部的邻居跳跃跳跃t ni相提并论,该模型会形成近核样物理的特征。
可控离子和超冷原子阵列可以模拟复杂的多体现象,并可能为现代科学中尚未解决的问题提供见解。为此,需要实验上可行的协议来量化量子关联和相干性的积累,因为执行全状态断层扫描不能随粒子数量而有利地扩展。在这里,我们开发并通过实验证明了这样一种协议,它使用多体动力学的时间反转来测量远程 Ising 自旋量子模拟器中的非时间顺序关联函数 (OTOC),该模拟器在 Penning 阱中有超过 100 个离子。通过测量作为可调参数函数的 OTOC 系列,我们获得了关于多量子相干谱中编码的系统状态的细粒度信息,提取了量子态纯度,并展示了多达 8 体关联的积累。该协议的未来应用可以用于研究多体定位、量子相变以及量子和引力系统之间的全息对偶性测试。电视
可控离子和超冷原子阵列可以模拟复杂的多体现象,并可能为现代科学中尚未解决的问题提供见解。为此,需要实验上可行的协议来量化量子关联和相干性的积累,因为执行全状态断层扫描不能随着粒子数量的增加而有利地扩展。在这里,我们开发并通过实验证明了这样一种协议,它使用多体动力学的时间反转来测量远程 Ising 自旋量子模拟器中的非时间顺序关联函数 (OTOC),该模拟器在 Penning 阱中有超过 100 个离子。通过测量作为可调参数函数的 OTOC 系列,我们获得了关于多量子相干谱中编码的系统状态的细粒度信息,提取了量子态纯度,并展示了多达 8 体关联的积累。该协议的未来应用可以实现多体定位、量子相变以及量子和引力系统之间全息对偶性测试的研究。T
静息态功能性磁共振成像是通过一系列功能连接模式发展而来的,这些模式可能反映正在进行的认知以及意识的内容。我们研究了对这些状态的动态探索是否可以为人类参与者的意识状态提供稳健且可推广的标记,涵盖全身麻醉或慢波睡眠引起的意识丧失。通过对功能连接的瞬时状态进行聚类,我们证明了无意识期间的大脑活动主要由结构连接介导的循环模式主导,并且转换到其他模式的能力降低。我们的研究结果提供了证据,支持了意识和无意识大脑状态在全脑动态方面的显著差异;特别是,维持以熵为衡量标准的丰富大脑动态是意识的一个关键方面。总的来说,我们的研究结果可能对我们理解意识和人类意识的神经基础具有重要意义,也有助于发现可推广到不同大脑状况的稳健意识特征。
在时间无关的量子系统中,纠缠熵具有固有的缩放对称性,该系统的能量没有。对称性还确保熵差异可以与零模式相关联。我们将这种对称性概括为时间依赖的系统,从具有时间依赖频率的耦合的谐波振荡器到具有时间依赖性质量的量子标量场。我们表明,这样的系统具有动力学缩放对称性,它留下了量子相关的各种度量的演变;纠缠熵,GS保真度,Loschmidt Echo和电路复杂性。使用此对称性,我们表明在系统发展不稳定性时,几个量子相关性在后期相关。然后,我们根据争夺时间和Lyapunov指数来量化此类不稳定性。发现Loschmidt Echo的指数衰减的延迟开始是由系统中最大的倒置模式确定的。另一方面,零模式在更长的时间内保留了有关系统的信息,最终导致了Loschmidt Echo的幂律衰减。我们将分析扩展到(1Þ1)维度中的时间依赖性的大规模标量字段,并讨论了零模式和倒置模式的含义。我们明确显示具有稳定模式或零模式的标量场之间的熵缩放率振荡。然后,我们对宇宙学和黑洞空位中标量场的上述效果进行定性讨论。
纠缠是量子技术的关键资源,是令人兴奋的多体现象的根源。,量化了现实世界中两个部分之间的纠缠在与环境相互作用时的两部分,因为后者将跨边界的经典与quantum相关性混合在一起。在这里,我们使用混合状态的操作员空间纠缠频谱在此类开放系统中有效地量化量子相关性。如果系统具有固定的电荷,我们表明光谱值的一个子集编码不同的跨边界电荷配置之间的相干性。这些值的总和我们称为“配置连贯性”,可以用作跨边界的量化。至关重要的是,我们证明,对于非侵扰地图,例如,林金型的演变与Hermitian跳跃操作员,配置连贯性是纠缠的措施。此外,可以使用该州密度矩阵的张量净工作表示可以进行官能计算。我们展示了在存在下的链上移动的无旋转粒子的配置共同体。我们的方法可以在广泛的系统中量化连贯性和倾向,并激发有效的纠缠。
我们通过对相关电子系统中局部电荷和局部自旋波动之间相互作用的微观机制进行了对几种基本多电子模型的广义现场电荷敏感性的彻底研究,例如Hubbard Atom,Hubbard Atom,Anderson Indrurity模型以及Hubbard模型。通过根据物理上透明的单玻色交换过程来构成数值确定的广义易感性,我们揭示了负责自以为是的多电子扰动扩展的显微机制。特别是,我们明确地确定了对(Matsubara)频率空间(Matsubara)频率空间的对角线条目的显着抑制的起源,以及导致崩溃的异性抗合性的略微增加。对对角线元件的抑制作用直接源自局部磁矩上的电子散射,反映了它们越来越长的寿命以及增强的有效耦合与电子的耦合。取而代之的是,非对角线项的轻微而分散的增强可以主要归因于多体散射过程。由于自旋和电荷扇区之间的强烈交织在近藤温度下部分削弱,这是由于在低频状态下局部磁波的有效自旋 - 纤维化耦合的逐步降低。因此,我们的分析阐明了相互作用的电子问题的不同散射量之间的物理信息的确切机制,并突出了这种相互交织在扰动方案以外的相关电子物理学中所起的关键作用。