本文对环境友好型抑制剂的获取及其在实践中的应用进行了研究。绿色抑制剂的来源是猪毛菜植物,研究了从该植物中提取绿色抑制剂提取物的方法。研究了所得提取物在0.5 M HCl 溶液中作为绿色抑制剂对碳钢结构的防腐作用。在确定猪毛菜植物绿色抑制剂的有效性时,在两种不同温度(298 K 和 313 K)和不同浓度(200 mg/L、400 mg/L、600 mg/L 和 1000 mg/L)下进行了实际实验。利用朗缪尔和特姆金等温线研究了绿色抑制剂在钢表面的吸附。还研究了温度和浓度对腐蚀速率的影响。采用重量法测定绿色抑制剂的有效性,发现其最大浓度为 91.86%。通过扫描电镜分析研究了该缓蚀剂在钢材表面及试验后钢样中的作用机理,结果表明,猪毛菜提取物的主要成分中含有杂原子有机化合物,是一种良好的绿色缓蚀剂。
腐蚀是一个普遍存在且代价高昂的问题,具有重大的经济和环境影响。防腐涂层在保护各行业免受腐蚀的有害影响方面起着至关重要的作用。这篇全面的综述概述了防腐涂层的最新进展,重点介绍了有机、无机和金属涂层。讨论了防腐涂层的基本原理,包括这些涂层提供防腐保护的机制。这篇综述重点介绍了有机涂层的最新进展,例如新配方的开发、自修复涂层和纳米技术的利用。此外,还探讨了无机和陶瓷涂层的进展,包括表面改性技术和有机-无机杂化涂层的整合。此外,本文还介绍了金属涂层的新兴趋势,包括合金设计、环保选择和表面工程技术。总结了涂层性能和测试的评估方法,包括加速腐蚀测试。这篇综述展示了防腐涂层在各个行业的广泛应用,并附有案例研究。本文还讨论了可再生能源和航空航天等新兴领域的挑战和机遇。最后,本文概述了未来的方向和挑战,强调了正在进行的研究和集成先进材料以实现多功能防腐的重要性。这篇综述论文是从事防腐研究的研究人员、工程师和从业人员的宝贵资源,可以全面了解最新进展并指导未来的研究工作。
该系统正在用水溶性腐蚀抑制剂处理,该抑制剂在每个井口都以200 ppm的速度在每个井口注射。减肥优惠券表示横向线的一般腐蚀速率约为4.0 mpy,主线为2.5 mpy。但是,大多数优惠券显示出明显的局部位置。沿着侧线的液体陷阱用于最大程度地减少液体保持和背压。不可能用线去除停滞的盐水。
预防腐蚀方法之一是在腐蚀性环境中添加称为抑制剂的化合物。抑制剂可以是无机或有机化合物。但是,由于其毒性影响,这些化合物对人类健康和环境很危险。除了获得它们之外,困难和昂贵。出于这个原因,近年来许多研究的主题是许多研究的主题。科学家专注于一类新的抑制剂,例如植物提取物,水果和蔬菜提取物和精油。植物提取物是研究最多的这些抑制剂,称为绿色抑制剂。植物提取物的保护作用是由于其分子在金属表面上的吸附。他们通过阻止活性位点为金属提供保护膜。膜的形成为金属表面提供了腐蚀性介质的物理屏障,并提供了腐蚀性攻击的保护作用。铜是高贵的金属,由于该特性,它表明可以抵抗腐蚀。然而,某些条件会引起铜的腐蚀,例如污染的空气,氧化酸,氧化重金属盐,硫氨以及一些硫和氨和氨化合物。因此,对铜腐蚀的研究很重要。在这篇综述中,用植物提取物总结了研究,这对铜的腐蚀具有抑制作用。
性能。在过去的十年中,已经对含有用于耐腐蚀性的复合涂料的基于功能化石墨烯的纳米片(GNP)进行了几项实验研究。其中一些提供了腐蚀抗性的改善,而其他一些则没有成功。例如,Krishnamoorthy等人[1]通过将石墨烯氧化物片掺入醇酸树脂中,制备了油漆复合材料。在类似于海水的侵略性氯化物环境中,通过数量级改善了镀锌铁的耐腐蚀性。Chang等[2]报道了聚苯胺(PANI)/石墨烯复合涂料,以提高钢在海水中的耐腐蚀性,最高数量级。电阻随复合材料中石墨烯基材料的含量而增加。但是,有必要适当地将本研究中使用的石墨烯纳米材料功能化。将GNP掺入聚合物矩阵后,由于聚合物涂层而导致的腐蚀性进一步改善的机制在于GNP在通过涂层渗透的同时为腐蚀性物种创造曲折路径的能力。实际上。在含聚苯胺/含有粘土的复合材料表(PACC)的情况下,一种类似的机制也是如此。然而,已经证明了带有GNP的复合涂料可以优于聚苯胺/粘土片(PACC)的复合材料,因为前者为腐蚀性物种提供了更曲折的路径,如通透性数据所证明的那样。另一项研究[3]还支持了由于基于石墨烯的材料的板/去角质而引起的曲折路径机制。已经对含有GNP的复合材料进行了进一步的研究(例如,石墨烯纳米片[4],氧化石墨烯(GO)[5],还原氧化石墨烯(RGO)[6])。但是,这些系统并未作为令人印象深刻的耐腐蚀性产生。为了理解这种变异性的原因并减轻它们的原因,建议在合成中利用机器学习(ML)可用的现代工具,以及其对复合涂料的降解。
钛合金,例如Ti6Al4v,由于其有利的性质,在生物医学行业被广泛用于11种植入物应用。然而,这些合金在存在体液的情况下可以经历12种长期腐蚀,这是植入物13的关键问题,因为它会影响其时间pan。因此,本研究旨在检查体液中14 Ti6al4v的腐蚀性。高度期望的电气排放加工(EDM)技术15用于TI6AL4V样品制备的三种不同条件(油,去离子水,16和羟基磷灰石)混合在去离子水中)。通过微观结构分析,使用电化学17分析评估腐蚀。 结果表明,使用18种水和油产生的样品分别具有最佳和最低的腐蚀性。 在水中在EDM中形成的保护性氧化物第19层,而在油中产生了EDM的异质表面。 20,电容的增加导致氧化物层的增厚,从而增强了21种腐蚀性。 22腐蚀。结果表明,使用18种水和油产生的样品分别具有最佳和最低的腐蚀性。在水中在EDM中形成的保护性氧化物第19层,而在油中产生了EDM的异质表面。20,电容的增加导致氧化物层的增厚,从而增强了21种腐蚀性。22
该研究研究了使用结构表征(气相色谱质量谱图,GC-MS,GC-MS和傅立叶转化基础型,FTIR,FTIR)(ftir)(ftir)(ftir)(ftir)(ftir)(ftir)(ftir)(ftir)(ftir),分别研究了1.0 m HCl和0.5 m H 2 SO诱导的低碳钢上的抗腐烂潜力(ZO)。电位动力学极化,PDP)技术和理论模拟。进行了结构表征,以鉴定植物提取物中存在的化学成分和官能团,而电化学技术和理论计算则用于检查提取物的抗腐蚀潜力并确定实验结果。GC-MS的结果表明,提取物中存在二十三(23)个化合物,其中三个(1-(1,5-二甲基-4-己基)-4-甲基 - 十二烷酸,十二烷酸和9-二十二苯卡烯酸(Z)-2- hydroxy-1-(hydroxy-1-(hydroxy-etraculation for for in Concution)在ZO提取物中存在以下官能团(O – H,C = C,C = O,C – C和C – H)。EIS的结果表明,ZO提取物在1 M HCl中的低碳钢和0.5 m H 2中的低碳钢和93.6%的腐蚀抑制作用分别在1000 mg / l的最大抑制剂浓度下分别为1000 mg / l。另外,PDP的结果表明,ZO提取物作为混合抑制剂起作用,因为阳极反应过程都改变了。量子化学计算结果表明,与其他两种化合物相比,9-八度二苯甲酸(Z)-2-羟基-1-(羟甲基)乙基酯具有良好的能隙(∆ E),表明其在硫酸环境中与金属表面更好地与金属表面相互作用。通过分子动力学模拟,在H 2 So 4环境中,在H 2 SO 4环境中,其良好的吸附能量为-355.55 kcal / mol在H 2 So 4 So环境中与-167.81kcal / mol相比。
有关于使用双原子苯酚C 6 H 4(OH)2作为混凝土中钢加固的腐蚀抑制剂的信息。儿茶酚(Ortho -dihydroxybenzene)在抑制钢的三个异构体中具有最大的有效性。但是,其作用的机制尚未得到充分研究。在本出版物中,已经对具有高氯化物含量的混凝土孔液体中未合金钢的腐蚀行为进行了研究。研究了铂电极上阴极和阳极极化下儿茶酚的电化学行为。已经发现,在偏振曲线的阴极截面中,在有儿茶素的情况下,由于溶解氧的减少而导致的电流显着降低。具有比E = –170 mV(Ag/AgCl)更阳性的,观察到与儿茶酚的氧化以及其氧化产物不稳定扩散的表现相关的不对称峰。 从钢上的极化曲线来看很明显,儿茶酚有效地降低了氧气回收电流并影响氧化铁形式的比率(Fe(II)/Fe(II)/Fe(III),但不会影响钢在具有和不具有抑制剂 通过线性极化抗性的方法,研究了儿茶酚浓度的腐蚀速率的动力学。 抑制作用增加,添加剂浓度增加到1 g/L,并在5 g/l的儿茶酚中降低。 讨论了抑制剂效应的机制。,观察到与儿茶酚的氧化以及其氧化产物不稳定扩散的表现相关的不对称峰。从钢上的极化曲线来看很明显,儿茶酚有效地降低了氧气回收电流并影响氧化铁形式的比率(Fe(II)/Fe(II)/Fe(III),但不会影响钢在具有和不具有抑制剂 通过线性极化抗性的方法,研究了儿茶酚浓度的腐蚀速率的动力学。 抑制作用增加,添加剂浓度增加到1 g/L,并在5 g/l的儿茶酚中降低。 讨论了抑制剂效应的机制。通过线性极化抗性的方法,研究了儿茶酚浓度的腐蚀速率的动力学。抑制作用增加,添加剂浓度增加到1 g/L,并在5 g/l的儿茶酚中降低。讨论了抑制剂效应的机制。
行业用作集装箱建筑材料和一部分机器。尽管它们在某些条件下易受腐蚀,尽管具有抗腐蚀的保护性氧气层。寻求保护这些金属,在受限的自旋极化DNP基础下,使用局部密度B3LYP进行了有关铝和锌腐蚀抑制的理论研究,以获得分子PNNT的稳定几何形状。e Homo,E Lumo,Energo GAP(ΔE),电子电位的值描述了偶极矩(μ),电负性(χ),全球硬度(η),全局硬度(η),全球亲电性指数(ω),源自捐赠的能量(ε)和ΔEB-D的能量(ΔEB-D)展示了分子和铁表面,包括(ω +)电感功率和(ω-)电载功率。 从仿真建模的结果中,物理吸附模式描述为PNNT与金属的相互作用模式。 通过福岛函数的结果表明,分子中存在的杂原子,例如氮,硫氧氟和亚甲基(-CH 2-)功能基(-CH 2-)功能组是金属和PNNT分子之间电子捐赠和接受性的选择性的焦点。 键长和角度的数据表明该分子是金属表面上的四方平面。 Al 40.118 kcal/mol的结合能大于Zn 19.482 kcal/mol表面的结合能,这表明对Al表面的分子Pnnt具有更大的吸附,其中吸附在两个表面上都假定的物理吸附过程e Homo,E Lumo,Energo GAP(ΔE),电子电位的值描述了偶极矩(μ),电负性(χ),全球硬度(η),全局硬度(η),全球亲电性指数(ω),源自捐赠的能量(ε)和ΔEB-D的能量(ΔEB-D)展示了分子和铁表面,包括(ω +)电感功率和(ω-)电载功率。 从仿真建模的结果中,物理吸附模式描述为PNNT与金属的相互作用模式。 通过福岛函数的结果表明,分子中存在的杂原子,例如氮,硫氧氟和亚甲基(-CH 2-)功能基(-CH 2-)功能组是金属和PNNT分子之间电子捐赠和接受性的选择性的焦点。 键长和角度的数据表明该分子是金属表面上的四方平面。 Al 40.118 kcal/mol的结合能大于Zn 19.482 kcal/mol表面的结合能,这表明对Al表面的分子Pnnt具有更大的吸附,其中吸附在两个表面上都假定的物理吸附过程e Homo,E Lumo,Energo GAP(ΔE),电子电位的值描述了偶极矩(μ),电负性(χ),全球硬度(η),全局硬度(η),全球亲电性指数(ω),源自捐赠的能量(ε)和ΔEB-D的能量(ΔEB-D)展示了分子和铁表面,包括(ω +)电感功率和(ω-)电载功率。从仿真建模的结果中,物理吸附模式描述为PNNT与金属的相互作用模式。通过福岛函数的结果表明,分子中存在的杂原子,例如氮,硫氧氟和亚甲基(-CH 2-)功能基(-CH 2-)功能组是金属和PNNT分子之间电子捐赠和接受性的选择性的焦点。键长和角度的数据表明该分子是金属表面上的四方平面。Al 40.118 kcal/mol的结合能大于Zn 19.482 kcal/mol表面的结合能,这表明对Al表面的分子Pnnt具有更大的吸附,其中吸附在两个表面上都假定的物理吸附过程