评估心肌的形状和运动状态对于诊断心血管疾病至关重要。然而,电影磁共振 (CMR) 成像以 2D 切片为主,其大切片间距对切片间形状重建和运动获取提出了挑战。为了解决这个问题,我们提出了一种将运动和形状分离的 4D 重建方法,该方法可以从有限切片获得的给定稀疏点云序列预测间/内形状和运动估计。我们的框架包括一个神经运动模型和一个舒张末期 (ED) 形状模型。隐式 ED 形状模型可以学习连续边界并鼓励运动模型在没有地面真实变形监督的情况下进行预测,并且运动模型通过将任意点从任意阶段变形到 ED 阶段来实现形状模型的规范输入。此外,构建的 ED 空间可以对形状模型进行预训练,从而指导运动模型并解决数据稀缺问题。我们提出了我们所知的第一个 4D 心肌数据集,并在提出的、公开的和跨模态的数据集上验证了我们的方法,显示出卓越的重建性能并实现了各种临床应用。
摘要 - 准确的定位在高级自主驾驶系统中起重要作用。传统地图匹配的本地化方法通过具有传感器观测值的明确匹配的地图元素来解决姿势,通常对感知噪声敏感,因此需要昂贵的超级参数调整。在本文中,我们提出了一个端到端定位神经网络,该神经网络直接估计车辆从周围图像中构成,而没有与HD图明确匹配的感知结果。为确保效率和可预性能力,提出了一个基于BEV神经匹配的姿势求解器,估计在基于可区分的采样匹配模块中估计姿势。此外,通过将每个姿势DOF影响的特征表示形式解耦来大大降低采样空间。实验结果表明,所提出的网络能够执行分解器水平的定位,平均绝对误差为0.19m,0.13m和0.39◦在纵向,横向位置和偏航角度,同时表现出68.8%的推理记忆使用率降低了68.8%。
摘要 - 准确的定位在高级自主驾驶系统中起重要作用。传统地图匹配的本地化方法通过具有传感器观测值的明确匹配的地图元素来解决姿势,通常对感知噪声敏感,因此需要昂贵的超级参数调整。在本文中,我们提出了一个端到端定位神经网络,该神经网络直接估计车辆从周围图像中构成,而没有与HD图明确匹配的感知结果。为确保效率和可预性能力,提出了一个基于BEV神经匹配的姿势求解器,估计在基于可区分的采样匹配模块中估计姿势。此外,通过将每个姿势DOF影响的特征表示形式解耦来大大降低采样空间。实验结果表明,所提出的网络能够执行分解器水平的定位,平均绝对误差为0.19m,0.13m和0.39◦在纵向,横向位置和偏航角度,同时表现出68.8%的推理记忆使用率降低了68.8%。
遗传性视网膜疾病是失明的主要且无法治疗的原因,因此是基因治疗的候选疾病。重组载体衍生自腺相关病毒(RAAV)是目前最有前途的体内治疗基因传递到视网膜的车辆。然而,在基于RAAV的眼部基因疗法的临床试验中,近期报道强调了基于AAV的新型载体,对眼科应用具有更大的效率对眼科应用。改进的载体的治疗性效果将允许递送的剂量减少,从而减少炎症反应。在这里,我们使用生物结合化学来描述新的RAAV载体的开发,以修改Raav Capsid,从而改善了治疗指数。通过形成硫库键与拉夫capsid的氨基群的共价耦合显着提高了大鼠和非人类灵长类动物的载体转导效率。这些优化的RAAV载体对治疗多种视网膜疾病具有重要的影响。
光刺激(来自数字微型摩尔设备的2-D灯罩用固态CW激光照明)和两个光子成像仅限于不同的光学Z-Planes,可以通过分别翻译扩散器和主要目标来灵活,独立地调整这些光学Z-plan。 (底部)在光刺激和成像期之间交替(滚动)。每个红色条代表一个多光子成像的单一框架。光刺激和成像期交错。(b)显微镜示意图。dm,二分色镜。dmd,数字微型摩尔设备。i,虹膜膜片。L1-L12,镜头。o,主要目标。PMT,光电倍增管。PS,潜望镜。s,快门。SM,扫描镜子。(c)(顶部)使用可移动扩散器将图案化的光刺激和多光子成像平面解)的例证。以4F镜头配置将扩散器成像成样品中;沿光路的扩散器转换会导致相应的投影平面轴向移动。OFP,客观焦平面。 PSP,光刺激平面。 (d)DMD芯片到CCD摄像头到2P显微镜注册。 我们注册了DMD刺激场(DMD像素尺寸= 2.4 µm,样品 1d)至148OFP,客观焦平面。PSP,光刺激平面。(d)DMD芯片到CCD摄像头到2P显微镜注册。我们注册了DMD刺激场(DMD像素尺寸= 2.4 µm,样品1d)至148(i)两个光子显微照片,分别为10 µm荧光微粒;箭头标记了两个微粒,这是较大的DMD调节投影靶模式(8 microbeads)的一部分,它们被视为受托点; (ii)更大的视野(包括目标微头)的广阔场荧光图像(全场照明); (iii)从2p图像中选择的ROI用于生成DMD-Chip灯罩;这些进一步投影在主要的客观焦平面上,并使用主CCD摄像头(CCD 1)成像; (iv)DMD生成的照片刺激口罩和(II)中10 µm微粒的宽场荧光图像的覆盖层;请注意,荧光仅限于由DMD光刺激掩模靶向的微粒,并具有最小的溢出到相邻(靶)的微粒(请参阅信托标记)。
地下流动问题对于许多科学和工程领域(例如地球物理学,环境科学,碳氢化合物提取和地热能量生产)来说都是有趣的。断层是地质结构,是流离失所的不连续性。在地下流量问题中,故障可以充当流体流动的导管或障碍,具体取决于断层的渗透性。这些断层结构可能会导致流体流动的显着变化,因此了解断层的相互作用(作为导管或屏障),而流体流对于应用很重要。在本文的其余部分中,我们将指向导管(通常称为裂缝)是导致断层和障碍物作为密封断层的。在[27]中提出了带有导电和密封故障的地下流的数学模型。他们进一步分析了此问题的混合有限元方法。在这项开创性的工作后,文献中出现了许多关于离散的地下流动流的作品。其中包括杂化高阶方法[11],内部惩罚不连续的盖尔金方法[25],连续不连续的盖尔金方法[31],一种杂交内部惩罚方法[23] [23],一种混合的虚拟元素方法[5],一种有限元方法[24],一种杂物元素方法[9]杂物[9]杂物[9],莫尔特(Mortar Arimation hybr A),效率分别效率[28],效率分别效应[28]。 29]和有限体积方法[12]。在昏暗维域上定义了多孔 - 矩阵流的darcy方程。但是,故障中的流体流量被建模为(dim-1)维域上的流量问题。在本文中,为了离散这个跨二维问题,我们提出了一种耦合的双重混合混合杂交不连续的Galerkin(HDG)方法和内部罚款不连续的Galerkin(IPDG)方法。HDG方法最初是在[14]中引入的,是一种减少传统不连续Galerkin方法的计算成本的方法。这是通过以促进静态凝结的方式引入新面部未知数来实现的。在网格的(dim-1)维定义的这些新面孔的引入,以及它们与网格昏暗细胞上未知的细胞耦合的耦合,但是,也为处理缺陷流动流动的多孔 - 矩形问题的二维问题提供了自然框架。使用双重矩阵流的昏暗维数darcy方程是使用双
量子纠缠态的控制和操纵对于量子技术的发展至关重要。一种有前途的途径是通过它们的光学偶极-偶极相互作用耦合固态量子发射器。纠缠本身就具有挑战性,因为它需要发射器之间的纳米距离和近乎简并的电子跃迁。在这里,我们实施高光谱成像来识别耦合的二苯并蒽分子对,并通过使用斯塔克效应调整分子光学共振来找到最大纠缠的超辐射和亚辐射电子态的独特光谱特征。我们展示了使用振幅和相位定制的激光场对长寿命亚辐射离域态进行远场选择性激发。耦合分子的光学纳米显微镜揭示了由其激发路径中的量子干扰引起的空间特征,并揭示了每个发射器的位置。受控电子态叠加将有助于破译由相干耦合控制的更复杂的物理或生物机制并开发量子信息方案。
控制和操纵量子纠缠非局域态是量子信息处理发展的关键一步。实现这种状态的一种有希望的大规模途径是通过相干偶极-偶极相互作用耦合固态量子发射器。纠缠本身就具有挑战性,因为它需要发射器之间的纳米距离和近乎简并的电子跃迁。通过实施高光谱成像来识别困在低温基质中的耦合有机分子对,我们通过斯塔克效应调节量子发射器的光学共振,获得了最大分子纠缠的独特光谱特征。我们还展示了使用振幅和相位定制的激光场对长寿命亚辐射离域态进行远场选择性激发。有趣的是,纠缠分子的光学纳米显微镜图像揭示了由其激发路径中的量子干涉产生的新空间特征,并揭示了每个量子发射器的确切位置。受控分子纠缠可以作为试验台,以解释由相干耦合控制的更复杂的物理或生物机制,并为实现新的量子信息处理平台铺平道路。
量子点在 InSb 纳米线内以栅极定义,靠近 NbTiN 超导触点。随着点和超导体之间的耦合增加,传输中的奇宇称占据区域在诱导超导间隙上方和下方都变得不可辨别(被擦除)。在间隙上方,奇数库仑阻塞谷中的电导率增加,直到谷被抬起。在间隙下方,安德烈夫束缚态经历量子相变,变为奇数占有的 Kondo 屏蔽单重态基态。我们研究了在低偏置和高偏置下奇宇称状态的明显擦除在多大程度上一致。我们用数值重正化群模拟来补充实验。我们从 Kondo 屏蔽和超导之间的竞争的角度来解释结果。在擦除奇宇称机制中,量子点表现出类似于有限尺寸马约拉纳纳米线的传输特征,在偶奇点占据和偶奇一维子带占据之间形成相似性。
摘要在理论上对大规模电磁场和等离子体之间的能量交换负责的基本过程在理论上是充分理解的,但实际上尚未对这些理论进行测试。这些过程在所有等离子体中都是无处不在的,尤其是在行星磁圈和其他磁性环境中高和低β等离子体之间的接口。尽管这种边界遍布等离子宇宙,但尚未完全识别导致储存磁和热等离子体能量的过程,并且每个过程的相对影响的重要性尚不清楚。尽管通过在磁重新连接中转换为磁到动能来理解能量释放方面,但过渡区域中拉伸和更松弛的田间线之间的极端压力如何平衡,并通过血浆和田地的绝对对流来释放并释放。必须测试最新的理论进步和大规模不稳定性的预测。本质上,负责的过程仍然很少理解,问题尚未解决。白皮书的目的提交了ESA的2050年航行电话,以及本文的内容是突出三个出色的开放科学问题,这些问题显然是国际兴趣的:(i)当地和全球等离子体物理学的相互作用:(ii)电子磁性对转换过程中电子磁性和质子质量能量之间的分配过程中的分配量和plasma Energy之间的分配量和(III II III和(III II II)和(III II)和(III)和(iii and conteres and corte and corte and conteres and(III II)。我们对当前最新的新测量和技术进步进行了讨论,以及这些国际高优先科学目标可以大大提高的几个候选任务概况。