在侧通道攻击中,攻击者利用计算或存储中的副作用来揭示表面上的秘密信息。许多侧向通道攻击源于以下事实:计算机是现实世界中的物理对象,因此计算可能需要不同的时间[KOC96],导致功耗不断变化[KJJ99],产生电磁辐射[QS01]或产生声音[GST14],Sound [GST14],Light [FH08]或温度[HS14] fluct [HS14]。泄漏信息的特定特征取决于算法的高和低级实现细节,通常是计算机硬件本身:分支条件,错误条件,内存缓存驱逐行为或电容器放电的细节。在已发表的文献中进行的第一批侧道攻击的作品并没有直接针对密码学[EL85],但是由于Kocher在90年代(KOC96,KJJ99)上的时间和权力分析的工作,密码学已成为侧渠道工作的流行目标。但是,很少有攻击者能够通过侧渠道读取完整的加密秘密。许多侧通道攻击所揭示的信息通常是间接或不完整的,或者可能包含错误。因此,为了充分理解给定脆弱性的性质,侧通道分析师通常需要利用其他隐次分析技术。在这种情况下,密码分析员的主要目标通常是:“我获得了以下有关秘密密钥的不完整信息。也就是说,这是一项非竭尽全力的调查,也是一个具有动机示例的具体教程。我们它使我能够有效地恢复其余的密钥?”不幸的是,没有一个尺寸的答案:这取决于所使用的特定算法,以及已恢复的信息的性质这项工作的目标是在一个地方一起收集该领域中最有用的一些技术,并提供一个相当全面的分类,以了解已知在实践中最常见的场景有效的效率。该领域的许多算法论文都具有完整的一般性结构,有时会掩盖读者关于方法为什么工作的直觉。在这里,我们旨在提供最小的工作示例,以说明简单但非平凡的情况的每种算法。
摘要。SHA-512和惠而浦是加密域中的两种独特的哈希算法。尽管它们不同,但这些方法具有某些特征。例如,它们都产生相同大小的安全摘要。此外,越来越多地用于维持机密文件的完整性。因此,探索一种对比和比较其性能的方法至关重要。本文在以下方面介绍了SHA-512和漩涡的比较分析:时间消耗,雪崩效应和对碰撞的抵抗力。它还在文件完整性监视的背景下研究了他们的适用性。我们的结果表明,在雪崩效应方案中,惠而以优于SHA-512,而对碰撞行为的可比性具有可比性。关于时间消耗,它比SHA-512慢。但是,这积极反映了其对蛮力攻击的抵抗力。
提供的安全服务。所涉及的实体。安全验证值(MAC,哈希,数字签名等)将需要生成和验证。使用的算法及其操作模式。要生成的关键材料。要使用的随机数发生器及其属性(例如关键一代,挑战,填充)。钥匙建立材料(密钥名称,加密的会话密钥,公共密钥证书或证书参考,初始化向量(如果有))。加密机制中用作输入的数据;这些应以明确的方式识别。签名生成/验证过程中使用的格式技术。如果有的话,用于表示二进制数据(称为过滤)的转换技术。第3.4节提供了更多详细信息。
未来的微体系结构将如何影响存在加密实现的安全性?由于我们无法继续减少晶体管的大小,因此芯片供应商已经开始开发新的微体系式优化以加快计算的速度。一项重新研究(Sanchez Vicarte等,ISCA 2021)表明,这些优化可能打开Pandora的微体系攻击盒。但是,关于如何评估未来优化建议的安全影响,几乎没有指导。为了帮助ChIP供应商探索微构造优化对加密实现的影响,我们开发了(i)一种称为LMSPEC的表达性域特异性语言,该语言允许他们为给定优化指定泄漏模型,并在(II)在指定的泄漏模型中自动漏洞泄漏模型,以自动检测泄漏模型。使用此框架,我们对五个流行文库中的八个加密原始图的25个实施的25种实施对18个提议的微体系优化进行了实证研究。我们发现,如果实现了这些优化,则每个实现都会包含依赖秘密的泄漏,有时足以恢复受害者的秘密密钥。具有讽刺意味的是,某些泄漏是可能仅是因为用于防止标准恒定时间模型下泄漏的编码ID iOM。
这项研究的目的是对软件加密的使用及其在确保数据和通信中的重要性进行全面了解。尽管先前关于数据和通信加密的研究集中在网络安全上,但很少有人注意检查使用加密软件与数据和通信加密之间的关系。软件加密工具可以增强数据隐私并帮助保护敏感数据。为了填补这一研究空白,本研究使用了有关使用密码软件工具用于数据通信加密的定量研究。通过在2023年4月1日至2023年4月29日之间在LinkedIn上部署的调查收集数据。该调查的目标人群是该领域的大学讲师和工作专业人员。共有61名参与者完成了调查。调查结果表明,更强大的加密工具和数据加密将在发送和接收敏感数据时增加用户对数据安全性的看法。这项研究表明,在发送和接收敏感数据时,更强的加密和数据加密会增加用户的信心。
我们根据区块链技术构建了一个密码互动方法博物馆艺术交换协议(MAXP),用于博物馆数字收藏。使用我们的方法,我们在以太坊上构建了数字收集交换系统,以实现数字收集在两个博物馆之间的在线交流。与传统的集中式收集数字资源数据库方法相比,MAXP可以避免在数字收集的交换过程中,例如黑客和网络病毒等主观因素和不可抗力因素引起的安全风险。在我们构建的交换系统中,数字收藏涵盖的内容的表达更加方便,并且版权纠纷可以快速解决。同时,鉴于区块链的权力下放和匿名性,已向MAXP添加了一种监管机制,以避免欺诈,非法筹款,洗钱和走私。我们构建的监管机制是基于双向算法算法和SM2椭圆曲线公共密钥加密算法的双重接收器公共密钥加密方案。发件人对收集数据进行加密,并且两个接收器都可以使用各自的私钥解密消息。接收者之一是获得收集信息的博物馆,另一个接收器是监管机构。这两个接收器可以同时解密,调节器可以调节区块链上的信息交换。北京天文馆和北京自然历史博物馆通过我们建造的系统完成了收藏的交换。分析结果表明,基于博物馆数字收藏的交换区块链系统的调查计划被证明是可行的,具有安全性和扩展性。我们在博物馆中新的新加密的数字收藏交换方法可以有效地促进博物馆之间的收藏交换,并且对促进文化遗产和传播科学知识具有很大的意义。
如图 1 所示,证明者能够生成状态 | ψ ⟩ = ( | 0 , x 0 ⟩ + | 1 , x 1 ⟩ ) | w ⟩ 。对于
