本课程专为工程专业二年级学生量身定制,深入探讨工程背景下的职业健康与安全 (OHS) 原则和实践。它探讨了管理工作场所安全的法律、道德和监管框架,特别关注工程行业。主题包括危险识别和风险评估、安全管理系统、人体工程学、工业卫生、个人防护设备 (PPE)、应急准备和事故调查。学生将学习分析工作场所危险、制定危险控制策略并实施安全协议以降低风险。案例研究和现实世界的例子将用于说明关键概念并培养 OHS 管理中的批判性思维。
摘要:本文介绍了一种基于二阶 delta-sigma 调制器的紧凑型低功耗 CMOS 生物电信号读出电路。该转换器使用电压控制的基于振荡器的量化器,通过单个无运算放大器的积分器和最少的模拟电路实现二阶噪声整形。已经使用 0.18 µ m CMOS 技术实现了原型,其中包括相同调制器拓扑的两种不同变体。主调制器已针对 300 Hz–6 kHz 频段的低噪声神经动作电位检测进行了优化,输入参考噪声为 5.0 µ V rms ,占地面积为 0.0045 mm 2 。另一种配置具有更大的输入级以降低低频噪声,在 1 Hz–10 kHz 频段实现 8.7 µ V rms ,占地面积为 0.006 mm 2 。调制器电压为 1.8 V,预计功耗为 3.5 µ W。
对现有科学文献的比较分析表明,基于陶瓷(Al 2 O 3 、TiO 2 、SiO 2 )及其主轴连接制成的传感器既有优点,也有缺点。采用特殊工艺方法制造的SiO2多孔材料成本高,对SO 2 、CO 2 、CO、NH 3 、CH 4 等有毒气体的灵敏度低,等效逆反应时间<10秒[1]。研究表明,由薄非晶态片状硫属玻璃(As 2 (Se 0.9 Te 0.1 ) 3 、As 2 Se 3 )制成的传感器的灵敏度取决于它们的成分,其惰性极低。主要原因是作为电子过程的体电导率变化发生得相当快[2]。另一方面,硫属化物玻璃传感器(As 4 S 3 和 As-Ge-Te)体积小、成本低、能耗低,灵敏度高 [3]。基于硫属化物 As 4 S 3 和 As-Ge-Te 玻璃薄层的电阻式传感器对丙胺 (C 3 H 7 NH 2 ) 和二氧化氮 (NO 2 ) 介质高度敏感,可成功用于监测这些介质,因为它们具有对湿度的动态响应、高恢复性和可逆性的特点 [3]。硫化物硫系玻璃(例如As-S)的波长主要在0.6~7微米范围内,而含锗(Ge)、硒(Se)、硫(S)和碲(Te)的硫系玻璃(Ge-S、Ge-Se、Ge-As-S、Ge-As-Se、Ge-As-Se)的波长更宽,光学透明度高(2~12微米),可以在相对较宽的温度范围内(200~300℃)作为更有效的光纤材料应用[4.5]。
以明确价格的市场可用的能源称为商业能源。电力,汽油,柴油,天然气等次要可用能源形式对于商业活动至关重要,并被归类为商业能源。该国的经济取决于其将自然原始能源转化为商业能源的能力。
金属 - 绝缘子 - 金属(MIM)电容器对于集成电路(ICS)至关重要。它们可以通过多种方式使用,例如解耦和过滤。高电容密度,低泄漏电流和小二次电压系数(a)是MIM电容器良好电性能的信号。为了获得高电容密度,可以使用高介电常数(K)材料,例如TA 2 O 5,HFO 2,Al 2 O 3,TiO 2和ZRO 2 [1-4]。Zro 2薄膜被认为是这些高k材料中的强大候选者,可以替代传统的介电材料SIO 2和SI 3 N 4,因为它具有许多优势,例如,高击穿电场,高介电结构和较大的能隙宽度[4]。有人研究了单个ZRO 2电介质MIM电容器,并获得了高电容密度,但是泄漏电流和值很差[5]。在这里,我们介绍了Al 2 O 3和SiO 2层以改进上述两个参数,因为Al 2 O 3的较大带隙为8.8 eV,SIO 2的较大频带差距为负值,因此Al 2 O 3 /Zro 2 /Zro 2 /Zro 2 /Zro 2 /Zro 2 /Zro 2 /Al 2 O 3(Azsza)结构MIM Capicitors设计了。需要强调的是,AZSZA结构是在相同的原子层沉积(ALD)系统中制备的。这不仅降低了实验的复杂性和成本,还降低了污染和引入杂质的可能性。因此,这是一种在
组织的任务:1。通过在成熟的培训中心赞助他们的职业培训来支持需要经济援助的渴望和雄心勃勃的年轻人获得教育资格。2。提供有关如何通过提供指导和讲习班来成功找到就业和/或建立自己的小型企业的指导。3。通过让他们参与社区发展活动,激发了年轻人成为自己社区中的积极贡献者。