该部门还提供研究生学习计划,以达到科学硕士学位,工程博士和哲学博士学位。电气和计算机工程的教职员工积极从事研究,该部门维护了广泛的实验室设施来支持研究工作。Areas of specialization include AI and machine learning engineering, atomic layer deposition, autonomous systems, biomedical engineering, bioelectrics, communications and networking, computer hardware cybersecurity engineering, distributed simulation, high performance computing, intelligent transportation systems, laser processing, microelectronics/nanotechnology, modeling/simulation/ visualization, medical modeling, multivariable systems/nonlinear控制,光伏,等离子体,量子计算,信号和图像处理,薄膜,虚拟现实和增强现实。
ece 201电路分析I(3个学时)线性电路分析和理论的简介。主题包括:被动组件定义和连接规则;独立和依赖的来源,权力和能源的概念;基尔乔夫的法律;开发网络减少技术;网格电流和节点电压方程的公式;网络定理包括Thevenin,Norton,最大功率传递和叠加定理,操作放大器,储能元素和初始条件。一阶和二阶电路的时间域分析,介绍性。矩阵和线性代数的基础知识以及高斯消除;线性电路分析的矩阵应用; MATLAB和电路仿真软件(MultiSim),并对被动电路进行分析和应用。(提供的秋季,春季,夏季)先决条件:ECE 111或同等学位,C级C或更高的数学级别212预先或原则:Phys 232n或Phys 262n
制造了抽象的高密度聚乙烯(HDPE)基于基于三种不同类型的石墨烯纳米纤维素(GNP)的纳米复合材料(GNP),以研究GNP的尺寸效应,以横向大小和厚度对形态,热,电气和机械性质的侧向尺寸和厚度。结果表明,GNP的包含增强了基于HDPE的纳米复合材料的热,电和机械性能,而不论GNP大小如何。然而,使用较大的侧向大小的GNP实现了热导电和最低电渗透阈值的最显着增强。这可能归因于以下事实:较大的侧向尺寸的GNP在HDPE中表现出更好的分散体,并形成了在扫描电子显微镜(SEM)图像中易于观察到的诱导途径。我们的结果表明,与其厚度相比,GNP的横向大小是上述纳米复合材料的更调节因素。对于给定的侧向尺寸,较薄的GNP显示出明显更高的电导率,并且渗透阈值低于较厚的电导率。另一方面,就热导率而言,仅在某个填充浓度上方观察到了显着的增强。结果表明,与其他相比,由于分散度较差,横向尺寸较小且厚度较大的GNP会导致样品机械性能的增强。另外,GNP的尺寸对HDPE/GNP纳米复合材料的熔化和结晶特性没有相当大的影响。
为了进一步阐明自旋,山谷和Minivalley自由度之间的相互作用,研究人员在外部磁场下进行了磁转运测量。这些测量结果提供了对自旋和山谷填充序列的见解,表明旋转填充序列可以从“ 2 + 2 + 4 + 4”变为“ 6 + 6”。这种过渡表明,可以利用Minivalley的自由度来电气操纵自由度,这一发现对量子控制和对电子状态的操纵产生了深远的影响。
摘要 - 神经疾病代表着重大的全球健康挑战,推动了大脑信号分析方法的发展。头皮脑电图(EEG)和三颅内脑电图(IEEG)广泛用于诊断和监测神经系统状况。但是,数据集异质性和任务变化在开发强大的深度学习解决方案方面构成了挑战。该评论系统地检查了基于EEG/IEEG的深度学习方法的最新进展,使用46个数据集,重点介绍了7种神经系统条件的应用。我们探讨了数据利用率,模型设计和特定于任务的适应趋势,突出了预训练的多任务模型对于可扩展的可扩展解决方案的重要性。为了进步研究,我们提出了一个标准化的基准,用于评估各种数据集的模型以增强可重复性。这项调查强调了最近的创新如何改变神经诊断,并能够开发智能,适应性的医疗保健解决方案。
在合格程度上至少要有55%的分数或同等的5.5 CGPA/CPI。如果属于SC,ST或残疾人(PWD)类别的候选人,则将其放松至50%或等效的5.0 CGPA/CPI。对于MCA/MSC通过了毕业生,将考虑MCA/MSC的百分比评分。对于没有PG专业化的BE/BTECH工程毕业生,将考虑本科学位的百分比评分。对于研究工程领域的毕业后,可以考虑PG评分资格。选择过程将安排在后咨询和申请过程中,具体取决于该计划的符合条件的申请数量。整个过程将在线。
图1。e-field剂量在主题一级优于其他给药策略。(a)选择所有线圈位置以最大化皮质靶刺激。(b)基于电动机阈值(MT)(上排)的剂量在不同的皮质靶区域(柱)施加相同的刺激器强度,从而产生高度可变的皮质刺激强度(以每米的电压为单位; V/m)。“ Stokes”方法(中行)线性地调节了线圈到目标距离的刺激器强度,但仍会导致跨靶标的皮质刺激的次优匹配。e-field的给药(底行)为所有靶标提供相同的皮质刺激强度。颜色:| e |。百分比:MT刺激器强度的百分比。所有电子场均在灰质表面可视化,以示例性主题。(c)刺激器强度(上排)与皮质刺激暴露(底行)之间的关系在皮质靶标之间有很大不同。在皮质靶标上提取刺激暴露,并与MT强度下的M1暴露有关(“ 100%”)。
ECE 5540。电气系统保护和开关设备。(3个学分)方法在中和低电压应用中感知电压和电流。电压传感技术包括差分电压放大器,分流电压测量和潜在变压器。当前的传感技术包括电流变压器,Rogowski线圈,串联电压测量和霍尔效应传感器。固态和机械继电器和时机功能。在中型电压水平上的保险丝和断路器,重点是评级,应用特定的选择和响应时间。保护方法,例如差异保护,对变压器,发电机和电缆,重点关注距离继电器和专业设备。查看类(https://catalog.uconn.edu/course-search/?详细信息和代码= ECE%205540)
图2。(a)使用基于有机的(MEOH-DMSO)电解浴的循环伏安图在ITO底物上以10 mV.s-1的扫描速率记录。(b)选定的循环伏安法扫描后,Ni 3(HITP)2个沉积物的SEM图像。(C) The chronoamperograms (normalized current density) and the corresponding cumulative deposition charge density for potentiostatic anodic deposition methods by using the continuous (dark colored line) and square pulsed (light colored line) methods (with t on = 1 min, V on = 0.8 V; and t off = 1 min, V off = open circuit voltage).(d)Ni 3(HITP)2个沉积物的相应SEM图像通过电位连续(深色轮廓)和脉冲沉积(浅色轮廓)获得。
手性在许多物理,化学和生物学领域至关重要,那里有两种不可感染的形式(对映异构体),其中一个是另一种镜像。自巴斯德时代以来,手性和磁性之间的相互作用一直引起了人们的关注,这是新兴的媒介的来源。基本的对称性论点表明,当将手性系统置于磁场中时,允许使用磁性效果的全新效果系列(MCHA)(MCHA)(有关最近的综述,请参见1)。该家族的第一个成员要在实验中报告,光学MCHA,cor-响应于在吸收和折射的非极化光的吸收和折射中,并平行或与fine field eeld平行,2。3最初在可见的波长范围内观察到4、5、6的存在,后来在整个电磁频谱中确定了从78到X射线,910和Photochem-Istry中的整个电磁谱。11电MCHA(EMCHA),在Bismuth螺旋,12个碳纳米管的电阻中观察到,13碳纳米管,14个散装的导体,15个金属,15,16 16半导体17和超导体18作为电阻和电气的抗性i的电阻,并取决于电气的抗药性。 b通过(bI)=0(1 +b·i)(1)