铜氧化物超导体 CuO 平面中的 Cu- d 和 O- px/y 轨道。超导性源于 Cu- d 上的电子空穴与周围四个 O- px/y 轨道的键合 ( L ) 组合形成的具有反平行自旋 (↑,↓) 的对。这些对的所有轨道分量都具有相同的 d 波 (+ (红色) 沿 x 方向,- (蓝色) 沿 y 方向) 结构,从而证明了更简单的单波段描述。
我们报告了RBCA 2 Fe 4 AS 4 F 2中3.5 MeV质子辐照的影响,4 F 2是一种基于铁的超导体,在Pnictides和Pnictides和Cuprate高温超导通器之间具有不寻常的特性。我们研究了由离子轰击引入的结构障碍如何通过结合共面波导谐振技术,电动传输测量和点接触Andreev-Reflection Spectroscopicy来影响临界温度,超流体密度和间隙值。与在可比的辐射条件下其他基于铁的超导体相比,与其他基于铁的超导体相比,超导性特性异常弱依赖性。原始rbca 2 Fe 4 AS 4 F 2展示的节点多图态也对质子辐照也很强大,其中两个波段D -d模型是最适合实验数据的模型。
在14 GPA的压力下,最近在LA 3 Ni 2 O 7-δ中发现了超导性特征,超导过渡温度约为80 K,引起了相当大的关注。研究电子结构的一个重要方面是辨别La 3 Ni 2 O 7-δ的电子接地状态与Cuprate超导体的母体状态(一种具有远距离抗铁磁性的电荷转移绝缘子)。通过X射线吸收光谱法,我们揭示了氧配体对Ni离子的电子接地态的影响,显示出类似于丘比特的电荷转移性质,但具有独特的轨道结合。此外,在LA 3 Ni 2 O 7-δ纤维中,我们使用谐振X射线散射测量值检测到Ni L吸收边缘的超晶格反射(1/4、1/4,L)。对共振的进一步检查表明,反射起源于Ni d轨道。通过评估反射的方位角依赖性,我们确认存在截面抗铁磁性旋转顺序和具有相同周期性的电荷的各向异性。我们的发现揭示了这两个成分之间的微观关系,在反射的散射强度的温度依赖性中。这项研究丰富了我们在高压下LA 3 Ni 2 O 7-δ中高温超导性的理解。
我们报告了RBCA 2 Fe 4 AS 4 F 2的3.5 MeV质子照射的影响,4 F 2是一种基于铁的超导体,在Pnictides和Pnictides和Cuprate高温超导体之间具有不寻常的特性。我们研究了由离子轰击引入的结构障碍如何通过结合共面波导谐振技术,电动传输测量和点接触Andreev-Refrespection光谱光谱来影响临界温度,超流体密度和间隙值。与在可比的辐射条件下相比,与其他基于铁的超导体相比,超导性能对该材料中的疾病量的异常弱依赖性。原始rbca 2 Fe 4 AS 4 F 2展示的节点多图态也对质子辐照也很健壮,其中两种频带D -d模型是最能拟合实验数据的模型。
早期,提出了QSL的几何沮丧的三角形晶格,并通过与苯环5中的谐振电子键相似的旋转的共鸣价键进行了概念化。随后将这种共鸣的价值键图应用于Cuprate高温超导体,作为强电子配对6的来源。尽管众所周知,QSL状态由于磁性挫败感而出现,但很难在现实的模型中稳定它们,更不用说实际的材料了。在2006年,通过引入一个可解决的模型,称为Kitaev模型,在Honeycomb晶格7上具有QSL基态,从而做出了开创性贡献。在此模型中,最近的邻氏旋转由不同的(x,y或z)组件耦合,具体取决于连接它们的键的方向(三种键型x,y和z的键在图中标记了不同的颜色1 a):
超导间隙对称性对于理解潜在的超导性机制至关重要。角度分辨光发射光谱(ARPES)在确定非常规超导体中的间隙对称性方面起着关键作用。然而,到目前为止,ARPE只能测量超导间隙的大小,而不能测量其相位的幅度。该相必须由其他相敏感技术检测到。在这里,我们提出了一种直接检测ARPES超导间隙标志的方法。使用众所周知的D波间隙对称性,在Cuprate超导体BI 2 SR 2 SR 2 CACU 2 O 8+δ中成功验证了此方法。当两个频段具有较强的带间相互作用时,超导状态下所得的电子结构对两个频段之间的相对间隙标志敏感。我们目前的工作提供了一种检测间隙标志的方法,可以应用于各种超导体,尤其是具有多个轨道的超导体,例如铁基超导体。
简介。最近发现的Altermagnetism [1-8]通过引入第三种磁性,开辟了新的凝结物理学研究领域[9],除了两种长期已知的磁性:铁磁性和抗逆性磁性。altermagnetism在非相互作用的电子带结构中的非同性旋转分裂引起的材料中出现,因此并不是由于电子相互作用而引起的,通常与磁性有关。Altermagnetism背后的非常规机制也导致完全不同的对称特性。在altermagnets中,由于克莱默的自旋变性而出现的磁化值是动量依赖性的,符号变化值和节点。值得注意的是,由于符号变化,净磁化在Altermagnet中仍然为零。替代磁性已经被提议存在于许多材料中,其中大多数显示了d-Wave-symerry [9],包括父母蛋饼材料LA 2 CUO 4 [3]。由于掺杂的铜材料是带有自旋的d波配对对称性的固有超导体[10,11],因此在Altermagnets中具有D-波超导性的诱人前景。几乎所有已知的超导体都被Bardeen,Cooper和Schrieffer(BCS)[12]理论很好地描述了,其中具有相反动量K和 - K的电子以及相反的旋转↑和↓对在旋转式结合中进行。因此,增加自旋分裂最终会破坏BCS状态。当旋转退化性破裂时,这些自旋平线对库珀对变得不那么能量有利,由于材料中存在固有的净化杂志而导致的自旋分裂产生了良好的自旋分裂。仍然,通过形成有限的质量中心动量,超导性已被证明可以为更大的外部磁场而生存,从而导致无限型摩托车超导性,
主要是一种可观察的电子,丘陵中的室温热电器S为对哈伯德模型的定量评估提供了可能的可能性。使用行列式量子蒙特卡洛(Monte carlo),我们在多个库酸盐家族之间进行了哈伯德模型计算与实验测量的室温S之间的一致性,这既在质量上都在掺杂依赖性方面,并且在大小方面。我们观察到s的上流,温度降低,其斜率与在铜层中实验观察到的斜率相当。从我们的计算中,S变化符号的掺杂量紧邻化学电位在固定密度下的温度依赖性的消失。我们的结果强调了相互作用效应在对热电酸盐的系统评估中的重要性。
2时刻。当孔(或电子)通过掺杂引入晶格时,旋转变成移动,残留的抗铁磁相互作用驱动D波配对。简化的模型将其视为浓度为1-x的单个电子带,在平方晶格上以跳高强度 - t和最近的邻居抗铁磁相互作用j移动。(b)丘脑超导体的示意图,其中x是孔掺杂的程度。在小X处形成相称的抗铁磁绝缘子(粉红色),而在较高的掺杂超导圆顶的情况下则形成。正常状态在低掺杂处包含一个伪gap,在最佳掺杂时形成奇怪的金属,并具有线性电阻率。fermi-likid样性能仅在高掺杂时才出现,只有在这种方案中,超导不稳定才能被视为费米液体的核心库珀对不稳定性的不稳定性。
简介。- 断裂的对称性通常会增强材料的功能。一个示例在半导体中损坏了代替对称性,从而导致了常规二极管效应[1]。最近已经意识到,在时间反转和反转对称性损坏的超导体中也可能发生二极管效应。在这种超导二极管效应(SDE)中,耗散的电流少于一个方向,而只有正常电流才能沿反向方向流动[1,2]。由于其构建节能电子功能的潜力,SDE在整体超导体[3-19]和Josephson的设置[20-30]中都受到了极大的关注,并且在许多实验性发现[31 - 39]中[31-39],并获得了60%的Diode diode效率[31 - 39]。