脑机接口 (BCI) 是一种在大脑和外部设备或机器之间建立直接通信通路的技术。BCI 系统允许个人仅使用大脑活动来控制或与技术交互,而无需任何肌肉运动。BCI 是一个快速发展的领域,在医学、游戏、娱乐和军事等各个领域都有潜在应用。BCI 系统使用各种技术,例如脑电图 (EEG)、脑磁图 (MEG)、功能性磁共振成像 (fMRI) 以及可植入电极等侵入性技术来记录脑信号。然后,这些信号被转换成动作,例如移动屏幕上的光标、控制假肢或使用虚拟键盘输入文本。BCI 技术有可能改变我们与技术互动的方式,并改善残疾人的生活质量。
摘要 本文介绍了一种新颖的人机界面,它基于舌头和嘴唇的运动,使用来自市售相机的视频数据。提取运动的大小和方向,可用于设置光标动作或进行其他相关活动。运动检测基于卷积神经网络。ASSISLT 系统 [1] 展示了所提解决方案的适用性,该系统旨在支持患有先天性和后天性运动性言语障碍的成人和儿童的言语治疗。该系统侧重于使用改善舌头运动和发音的练习进行个性化治疗。该系统提供了一组可调节的练习,使用增强现实来激励练习者的正确表现。自动评估治疗动作的表现使治疗师能够客观地跟踪治疗进展。
7.1 复位条件 7.2 输入格式化程序 7.3 RGB LUT 7.4 光标插入 7.5 RGB YC B -CR 矩阵 7.6 水平缩放器 7.7 垂直缩放器和防闪烁滤波器 7.8 FIFO 7.9 边界发生器 7.10 振荡器和离散时间振荡器(DTO) 7.11 低通时钟发生电路(CGC) 7.12 编码器 7.13 RGB 处理器 7.14 三重 DAC 7.15 HD 数据路径 7.16 时序发生器 7.17 HD 同步脉冲的模式发生器 7.18 I 2 C 总线接口 7.19 省电模式 7.20 对 SAA7104H 进行编程; SAA7105H 7.21 输入电平和格式 7.22 位分配图 7.23 I2C 总线格式 7.24 从属接收器 7.25 从属发送器
经过多天的练习,完成双手控制任务的从头运动学习 Adrian M. Haith 1 、Christopher Yang 2 、Jina Pakpoor 1 和 Kahori Kita 1 约翰霍普金斯大学 1 神经病学系、2 神经科学系,美国马里兰州巴尔的摩 摘要 尽管关于运动学习的许多研究都集中在我们如何调整动作以在面对强加的扰动时保持表现,但在许多情况下,我们必须从头学习新技能,或者从头学习。与适应相比,人们对从头学习知之甚少。部分原因在于学习一项新技能可能涉及许多挑战,包括学习识别新的感觉输入模式和产生新的运动输出模式。但是,即使有了熟悉的感觉线索和练习过的动作,根据当前状态快速选择适当的动作仍然是一个挑战。在这里,我们设计了一个双手手到光标映射来隔离这个控制问题。我们发现,尽管参与者对映射有明确的了解,但他们最初还是难以在这种双手映射下控制光标。然而,经过多天的练习,表现稳步提高。参与者在恢复到真实光标时没有表现出任何后遗症,这证实了参与者是从头开始学习新任务的,而不是通过适应。对目标中途运动扰动的纠正反应最初很弱,但随着练习,参与者逐渐能够对这些扰动做出快速而有力的反应。经过四天的练习,参与者在双手映射下的行为几乎与使用真实映射光标时的表现相匹配。然而,在表现水平上仍然存在微小但持续的差异。我们的研究结果说明了学习新控制器的动态和局限性,并引入了一个有前途的范例,用于研究运动技能学习的这一方面。 通讯作者:Adrian Haith 209 Carnegie 550 North Wolfe Street Baltimore, MD, 21287, USA adrian.haith@jhu.edu 简介
摘要:鼠标是现代所有计算机系统中不可或缺的输入设备。输入设备是我们每天使用的高接触表面,通常一整天都在使用。因此,鼠标上沾满了细菌。尽管无线鼠标让我们摆脱了对杂乱电缆的需求,但仍然需要触摸设备。鉴于疫情,本系统使用内置摄像头或外围网络摄像头捕捉手部动作和指尖检测,可以执行传统的鼠标功能,如左键单击、右键单击、滚动和光标功能。该算法基于机器学习。使用深度学习对算法进行训练,以便可以使用摄像头检测手部。因此,本系统将通过消除人为干预和对物理设备控制计算机系统的依赖来防止 Covid-19 的传播。
摘要。驾驶舱(也称为飞行甲板)是飞机的交互式环境,使飞行员和副驾驶员能够监视和控制飞机系统。允许机组人员使用键盘和光标控制单元通过显示单元控制飞机系统是基于 ARINC 661 标准的新一代驾驶舱的主要功能之一。飞机制造商目前正在研究在未来驾驶舱中部署触摸交互,ARINC 661 标准(补充 7)为此目的进行了扩展。虽然触摸交互在性能方面表现出色(从用户的角度来看),但它们的可靠性是一个尚未解决的重要问题。本文提出了一种触摸设备交互技术——Brace Touch,旨在通过提供解决开发、自然和操作故障的解决方案来提高触摸交互的可靠性。
肌电接口在消费者和健康应用中前景广阔,但目前它们受到不同用户之间性能差异和任务间通用性差的限制。为了解决这些限制,我们考虑在操作过程中不断适应的接口。尽管当前的自适应接口可以减少受试者之间的差异,但它们在任务之间的通用性仍然很差,因为它们在训练期间使用了特定于任务的数据。为了解决这一限制,我们提出了一种新范式,使用自然眼球注视作为训练数据来调整肌电接口。我们招募了 11 名受试者,使用从前臂肌肉测量的高密度表面 EMG 信号在 2D 计算机光标控制任务上测试我们提出的方法。我们发现我们的凝视训练范式和当前的任务相关方法之间的任务性能相当。这一结果证明了
满足测试工程师的需求:便利性、性能、灵活性和安全性 LASER USB 是测试实验室的理想控制器,因为它集便利性、性能、灵活性和安全性于一体。它提供 24 位精度、宽控制动态范围和快速循环时间,为您最具挑战性的测试提供卓越的控制。LASER USB 也是满足您测试需求的高度灵活的解决方案,具有全功能控制和分析软件应用程序,可用于随机、扫频正弦、共振驻留、经典冲击、随机对随机、正弦对随机、冲击 SRS 和现场数据复制。峰度控制和疲劳监测等先进技术可缩短测试时间并提高产品的可靠性。一键式报告功能可快速轻松地为您的设计团队或客户创建全面的报告,特殊的活动报告允许您重新缩放、缩放或光标移动 Microsoft ® Word ® 报告文档中的任何数据图。
自主运动由初级运动皮层 (M1) 驱动,个体可以学会随意调节单个神经元。然而,M1 也接收明显的感官输入并有助于感官驱动的运动反应。这些非意志信号在多大程度上限制了 M1 的自主调节?使用一个任务,其中单个神经元的发放率直接决定计算机光标沿视轴的位置,我们 5 评估了猴子在不同感官环境下调节单个神经元的能力。我们发现感官环境持续影响 M1 中单个神经元的意志控制。例如,视觉旋转生物反馈轴可能会使相同的神经任务变得轻松或困难。值得注意的是,几天内或几天之间的延长训练并不能解决这种差异。我们的研究结果表明,感官环境可以限制 M1 活动受意志控制的程度。10