由NIH R01赠款以及多个州和地方赠款资助,我的研究是高度互认为的,与医学专业和社会科学融合了多个科学和工程分支,并针对人类福利的直接进步。具体来说,我的研究借鉴了人工智能,计算机视觉,机器(深度)学习,可视化,高性能计算,软件工程,成像科学,统计和数学,我的研究着重于开发新型的计算方法和系统,以支持临床决策制定,并促进精确的医学和健康。我的实验室试图通过基于多学科的团队的方法来应对生物医学面临的深刻挑战:大数据涉及心脏病学,胃肠病学,肿瘤学,病理学,放射学等。这些系统旨在通过减少诊断时间,提高准确性,提高质量,降低成本以及扩大医疗专业知识的可访问性来消除健康和医疗保健的障碍。支持ASU的宪章和目标,以“使用Mayo Clinic 1建立能够创新的健康解决方案途径。。。增强了200万患者的治疗方法”,我已经在多个部门和部门之间与Mayo诊所建立了强有力的合作,我的努力导致了几个基于多学科的团队赠款。我被选为首届Mayo诊所ASU联盟研究员。此外,我还获得了40项美国专利,并获得了50多项专利。我以我的整体和细致的教学和指导方式而闻名。我在我领域的一些最负盛名的期刊和信息中发表了100多个经过同行评审的出版物,例如自然,IEEE医学成像交易(TMI),医学图像肛门(媒体)(媒体),CVPR,ICCV,MICCAI和IPMI。我们的出版物在我的研究领域受到了荣誉,其中包括Miccai最佳纸跑步者(2023),Dart Best Paper Award Runner UP(2023),Elsevier Media Best Paper Award(2020),Miccai Young Scientist奖(2019年),Miccai Best Eranctation Award的决赛入围者(2019年),以及麦克风最佳奖项(2019年),以及麦克风的年轻科学家(2015年)(2015年)。我在2019年,2020年,2023年和2024年获得了四次教师教学奖提名,并在2024年的2024 - 2025年研究生学院杰出的博士生杰出导师。我实验室中的学生在ASU期间获得了70多个奖项和认可,包括NCWIT大学奖(2022年)和AMIA博士学位论文奖(全球生物医学信息学上最好的论文)(2022年)。我目前是医学图像分析编辑委员会,我领域最佳日记的编辑委员会,以及我所在地区的顶级会议的Miccai,MIDL和CVPR的区域主席。我曾担任IEEE医学成像交易的客座编辑(2020-2021)。我也曾在NIH研究部分任职。认可我的贡献,我当选为国家发明师学院(NAI)(2021)的会员,并获得了杰出教师奖(2023),教职员工指导奖(2020)和教师创新奖(2019年)。我的团队在2015年和2024年获得了总统创新奖两次,并获得了Elsevier Media Best Paper Award(2020),这是该领域最负盛名的奖项之一。
AI 人工智能 ANL 阿贡国家实验室 API 应用程序编程接口 AWS 亚马逊网络服务 BigEarth BigEarth 欧洲研究委员会 CADES 科学计算和数据环境 CNCF 云原生计算基金会 CV 计算机视觉 CVPR 计算机视觉和模式识别会议 DARPA 国防高级研究计划局 DARPA STO 国防高级研究计划局战略技术办公室 DHS 国土安全部 DL 深度学习 DOE 能源部 EO 地球观测 FEMA 联邦紧急事务管理局 FPGA 现场可编程门阵列 FTP 文件传输协议 GCP 谷歌云平台 GDAL 地理空间数据抽象库 GeoAI 用于地理知识发现的人工智能 GIS 地理信息科学 HDD 硬盘驱动器 HPC 高性能计算 HTTP 超文本传输协议 IoT 物联网 MIT 麻省理工学院 ML 机器学习 NAIP 国家农业图像计划 NASA 美国国家航空航天局 Navy 海军信息战中心太平洋 NCCS 国家计算科学中心 NDAAS NSG 数据分析建筑服务 NDWI 归一化差异 水指数 NGA 国家地理空间情报局 NISR 巴西 国家空间研究所 巴西
– Program committee member / reviewer for ACL (2023, 2020, 2017, 2016, 2014, 2013, 2012, 2011, 2010, 2009, 2007, 2005, 2004, 2003, 2002), AISTATS (2010), COLING (2014, 2012, 2008), EAAI (2013), EACL (2012, 2006, 2003, 1999), EMNLP (2018, 2017, 2016, 2014, 2013,2012,2011,2011,2010,2010,2008,2008,2007,2006,2003,2002 - 2018,2010中的“最佳审稿人”奖项,FSMNLP(2005,2001),ICGI(2012),ICFP(2008),ICLR(2008),ICLR(ICLR(2017),2017年),ICML(2019,2016,2016,2004); NAACL (2016, 2015, 2013, 2012, 2010, 2009, 2006), NeurIPS (2020, 2019, 2018, 2017, 2016, 2014, 2013, 2011, 2010, 2007), NLP-LING (2010), SCiL (2020, 2018), SIGMOR- PHON (2023, 2019, 2018, 2014, 2012, 2010, 2008, 2006, 2004, 2002, 2000, 1998年),WINLP - 卫生NLP研讨会(2023,2021,2019,2018,2018,2017),ACL统计NLP和加权自动机(Statfsm)(2016)(2016),ACL关于NLP(unsnlp)的神经疗法中的语言结构相关性的ACL相关性(2011年) ACL关于NLP和CL教学的ACL讲习班(2024、2013、2008、2005、2002),CVPR结构化预测的研讨会(2013年),ICML关于依次模型预测的关于预测的研讨会(2013),国际惯例会议,依赖性语言学的国际会议(2011年),关于对Slavic语言学的诉讼,对Slavic Linguisticals的For-Mal of-Mal of-Mal of-Mal Intershop。
[1]。Zhongzhan Huang,Pan Zhou,Shuicheng Yan,Liang Lin。 通过缩放网络长跳连接进行扩散模型的更稳定训练。 神经信息处理系统(神经),2023 [2]。 上海Gao,Pan Zhou,Ming -Ming Cheng,Shuicheng Yan。 掩盖扩散变压器是强大的图像合成器。 国际计算机视觉会议(ICCV),2023 [3]。 li,Xiangyu Xu,Hehe Fan,Pan Zhou,Jun Liu,Jia -Wei Liu,Jiahe Li,Jussi Keppo,Mike Zheng Shoun,Shuichen Yan。 史密图:时空临时隐私的行动识别。 国际计算机视觉会议(ICCV),2023 [4]。 Alex Jinpeng Wang,Pan Zhou,Mike Zheng Shou,Shuicheng Yan。 位置引导的文本提示,以进行视力 - 语言预训练。 IEEE计算机视觉和模式识别会议(CVPR),2023 [5]。 pan Zhou,Xingyu Xie,Shuicheng Yan。 胜利:自适应梯度算法的重量 - 纳斯特诺夫加速度。 国际学习表征会议(ICLR),2023年(口头)[6]。 Jiachun Pan*,Pan Zhou*,Shuicheng Yan。 了解为什么掩盖重建预处理有助于下游任务。 国际学习表征会议(ICLR),2023年(*同等贡献)[7]。 Bowen Dong,Pan Zhou,Shuicheng Yan,Wangmeng Zuo。 lpt:长时间的提示调整以进行图像分类。 国际学习表现会议(ICLR),2023 [8]。 chenyang si*,weihao yu*,pan Zhou,Yichen Zhou,Xinchao Wang,Shuichen Yan。Zhongzhan Huang,Pan Zhou,Shuicheng Yan,Liang Lin。通过缩放网络长跳连接进行扩散模型的更稳定训练。神经信息处理系统(神经),2023 [2]。上海Gao,Pan Zhou,Ming -Ming Cheng,Shuicheng Yan。掩盖扩散变压器是强大的图像合成器。国际计算机视觉会议(ICCV),2023 [3]。li,Xiangyu Xu,Hehe Fan,Pan Zhou,Jun Liu,Jia -Wei Liu,Jiahe Li,Jussi Keppo,Mike Zheng Shoun,Shuichen Yan。史密图:时空临时隐私的行动识别。国际计算机视觉会议(ICCV),2023 [4]。Alex Jinpeng Wang,Pan Zhou,Mike Zheng Shou,Shuicheng Yan。 位置引导的文本提示,以进行视力 - 语言预训练。 IEEE计算机视觉和模式识别会议(CVPR),2023 [5]。 pan Zhou,Xingyu Xie,Shuicheng Yan。 胜利:自适应梯度算法的重量 - 纳斯特诺夫加速度。 国际学习表征会议(ICLR),2023年(口头)[6]。 Jiachun Pan*,Pan Zhou*,Shuicheng Yan。 了解为什么掩盖重建预处理有助于下游任务。 国际学习表征会议(ICLR),2023年(*同等贡献)[7]。 Bowen Dong,Pan Zhou,Shuicheng Yan,Wangmeng Zuo。 lpt:长时间的提示调整以进行图像分类。 国际学习表现会议(ICLR),2023 [8]。 chenyang si*,weihao yu*,pan Zhou,Yichen Zhou,Xinchao Wang,Shuichen Yan。Alex Jinpeng Wang,Pan Zhou,Mike Zheng Shou,Shuicheng Yan。位置引导的文本提示,以进行视力 - 语言预训练。IEEE计算机视觉和模式识别会议(CVPR),2023 [5]。pan Zhou,Xingyu Xie,Shuicheng Yan。胜利:自适应梯度算法的重量 - 纳斯特诺夫加速度。国际学习表征会议(ICLR),2023年(口头)[6]。Jiachun Pan*,Pan Zhou*,Shuicheng Yan。 了解为什么掩盖重建预处理有助于下游任务。 国际学习表征会议(ICLR),2023年(*同等贡献)[7]。 Bowen Dong,Pan Zhou,Shuicheng Yan,Wangmeng Zuo。 lpt:长时间的提示调整以进行图像分类。 国际学习表现会议(ICLR),2023 [8]。 chenyang si*,weihao yu*,pan Zhou,Yichen Zhou,Xinchao Wang,Shuichen Yan。Jiachun Pan*,Pan Zhou*,Shuicheng Yan。了解为什么掩盖重建预处理有助于下游任务。国际学习表征会议(ICLR),2023年(*同等贡献)[7]。Bowen Dong,Pan Zhou,Shuicheng Yan,Wangmeng Zuo。lpt:长时间的提示调整以进行图像分类。国际学习表现会议(ICLR),2023 [8]。chenyang si*,weihao yu*,pan Zhou,Yichen Zhou,Xinchao Wang,Shuichen Yan。启动变压器。神经信息处理系统(Neurips),2022(口服)(*均等贡献)[9]。Yuxuan Liang,Pan Zhou,Roger Zimmermann,Shuicheng Yan。双形式:局部全球分层变压器,以进行有效的视频识别。欧洲计算机视觉会议(ECCV),2022 [10]。Junbin Xiao,Pan Zhou,Tat -Seng Chua,Shuicheng Yan。 视频问题的视频图形变压器Junbin Xiao,Pan Zhou,Tat -Seng Chua,Shuicheng Yan。视频问题的视频图形变压器
基于视觉的驾驶政策基于基准测试是具有挑战性的。一方面,带有实际数据的开环评估很容易,但是这些结果并不能反映闭环性能。在另一个闭环评估中是可以在模拟中进行的,但是由于其巨大的计算需求,很难扩展。此外,当今可用的模拟器显示出对真实数据的较大域间隙。这导致无法从端到端自动驾驶的迅速发展的研究体系中得出明确的结论。在本文中,我们提出了NAVSIM,这是这些评估范式之间的中间立场,在该范式中,我们将大型数据集与非反应模拟器结合使用来启用大型现实基准测试。具体来说,我们通过展开鸟类的眼睛视图抽象来收集基于模拟的指标,例如进度和碰撞的时间,以进行简短的模拟视野。我们的仿真无反应,即,评估的政策和环境不会相互影响。正如我们从经验上证明的那样,这种去耦允许开环计算,同时比传统的位移误差更好地与闭环评估保持一致。NAVSIM启用了在CVPR 2024举行的一项新比赛,其中143支球队提交了463个参赛作品,从而产生了一些新的见解。在一系列具有挑战性的情况下,我们观察到具有适度计算要求(例如接送器)的简单方法可以匹配最近的大型端到端驱动体系结构,例如UniaD。我们的代码可在https://github.com/autonomousousvision/navsim上找到。我们的模块化框架可能会通过新的数据集,数据策略和指标来扩展,并将不断维护以承受未来的挑战。
[2] Hsiang-fu Yu,Cho-Jui Hsieh,Kai-Wei Chang和Chih-Jen Lin,当数据无法填充记忆中时,大型线性分类,第16届ACM SIGKDD国际知识发现与数据挖掘和数据挖掘的国际会议(KDD 2010)(KDD 2010),最佳研究论文,最佳研究论文,最佳研究论文。[3] Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jianwei Yang, Chunyuan Li, Yiwu Zhong, Lijuan Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, Kai-Wei Chang , and Jianfeng Gao, Grounded Language-Image Pre-training, the Computer Vision and Pattern Recognition Conference (CVPR 2022)。最佳纸决赛入围者,在8161个提交中,有33名,最高0.4%[4] Kuan-Hao Huang,Varun Iyer,I.-Hung Hsu,Anoop Kumar,Kai-Wei Chang和Aram Galstyan。“ Paraamr:AMR反翻译的大规模句法释义数据集。”在计算语言学协会年度会议中(ACL 2023)。区域椅子奖(语义曲目中的顶纸)[5] Nikil Roashan Selvam,Sunipa Dev,Daniel Khashabi,Tushar Khot和Kai-Wei Chang。“尾巴摇晃狗:社会偏见基准的数据集建筑偏见。”在计算语言学协会年会(ACL Short)的年度会议中,2023年。杰出纸奖[6] Hritik Bansal,Yonatan Bitton,Idan Szpektor,Kai-Wei Chang和Aditya Grover。videocon:通过对比标题进行稳健的视频语言对齐。在计算机视觉和模式识别会议上(CVPR,2024)。在ICLR研讨会上有关基础模型数据问题的最佳纸张奖。[7] Pan Lu,Hritik Bansal,Tony Xia,Jiacheng Liu,Chunyuan Li,Hannaneh Hajishirzi,Hao Cheng,Kai-Wei Chang,Michel Galley和Jianfeng Gao。MathVista:评估视觉上下文中基础模型的数学推理。在国际学习表征会议上(ICLR,2024)。被选为口头(7,000份提交中的85个,前1.2%)[8] Hritik Bansal,Nishad Singhi,Yu Yang,Fan Yin,Aditya Grover和Kai-Wei Chang。“ CleanClip:减轻多模式对比学习中的数据中毒攻击。”在国际计算机愿景会议上(ICCV,2023)。为口头选择(在8088个意见中,有195个,前2.5%),ICLR的最佳纸张奖,涉及可信赖和可靠的大型机器学习模型。[9] Tao Meng,Sidi Lu,Nanyun Peng和Kai-Wei Chang。在神经信息处理系统中具有神经化甲骨文的可控文本生成(Neurips 2022)。被选为口头,201311年中有201名最高1.9%[10]洪川张,liunian Harold Li,Tao Meng,Kai-Wei Chang和Guy van den Broeck。“关于从数据中进行推理的悖论。”在人工智能国际联合会议中(IJCAI 2023)。ijcai-23中的前3个引用的论文[11] Sheng Shen,Liunian Harold Li,Hao Tan,Mohit Bansal,Anna Rohrbach,Kai-Wei Chang,Zhewei Yao和Kurt Keutz,Keurt Keutz,剪辑可以剪辑多少愿望和语言?国际学习代表会议(ICLR 2022)。iClr-22 [12] W. Ahmad,S。Chakraborty,B。Ray,K.-W。张。旨在进行程序理解和生成的预先培训。计算语言学协会北美分会(NAACL 2021),NAACL-21的前3个引用论文。太阳。[13] Z. Hu,Y。Dong,K。Wang,K.-W。 Chang和Y。gpt-gnn:图神经网络的生成预训练。ACM SIGKDD国际知识发现与数据挖掘会议(KDD 2020),在KDD-20的前10名引用论文。[14] M. Alzantot,Y。Sharma,A。Elgohary,B.-J。HO,M。Srivastava,K.-W。张。 生成自然语言对抗性示例。 自然语言经验方法会议HO,M。Srivastava,K.-W。张。生成自然语言对抗性示例。自然语言经验方法会议
1。x li,j ding,m elhoseiny。vrsbench:一种多功能视觉语言基准数据集,用于遥感图像理解。神经信息处理系统(NERUIPS)的第三十八大会,2024年。pdf 2。m艾哈迈德,X li,M Elhoseiny。3DCOMPAT200:用于组成识别的语言扎根大规模3D视觉数据集。第三十八届神经信息处理系统会议(Neruips),2024年。3。x li†,Jian ding†,Z Chen,M Elhoseiny。uni3dl:3D和语言理解的统一模型。欧洲计算机视觉会议(ECCV)2024。PDF 4。J Chen,D Zhu,X Shen,X Li,Z Liu,P Zhang,R Krishnamoorthi,V Chandra,Y Xiong,M Elhoseiny。迷你v2:大型语言模型作为视觉多任务学习的统一接口。arxiv。PDF 5。D Zhu,J Chen,X Shen,X Li,M Elhoseiny。Monigpt-4:使用先进的大语言模型来增强视力语言理解。国际学习表征会议(ICLR)2024(> 24K在GitHub开始)。PDF 6。J Chen,D Zhu,K Haydarov,X Li,M Elhoseiny。 视频chatcaptioner:迈向丰富的时空描述,arxiv 2023。 PDF 7。 f khan†,X li†,一座寺庙,M elhoseiny。 渔网:用于鱼类补充,检测和功能性状预测的大规模数据集和基准。 国际计算机视觉会议(ICCV),2023年。 PDF 8。 pdfJ Chen,D Zhu,K Haydarov,X Li,M Elhoseiny。视频chatcaptioner:迈向丰富的时空描述,arxiv 2023。PDF 7。f khan†,X li†,一座寺庙,M elhoseiny。渔网:用于鱼类补充,检测和功能性状预测的大规模数据集和基准。国际计算机视觉会议(ICCV),2023年。PDF 8。pdfX Shen,X Li,M Elhoseiny。MASTGAN:具有时间运动风格的视频,IEEE计算机视觉和模式识别会议(CVPR),2023年。
奖项与荣誉 • 2024 年 ASU 健康解决方案学院研究奖 • 2024 年 ASU 健康解决方案学院教师研究日最佳海报奖 • 2022 年 BSN 会议最佳论文荣誉奖 • 2020 年 UbiComp/ISWC 会议最佳可穿戴设备笔记奖 • 2020 年 CVPR 持续学习研讨会最佳论文亚军奖 • 2019 年早期终身任职和晋升,华盛顿州立大学电子工程与计算机科学学院 • 2019 年最佳论文奖提名,ACM 交互式智能系统学报 • 2019 年学术顾问卓越奖,华盛顿州立大学 GPSA • 2019 年最佳论文奖,IEEE 电子设计自动化理事会 (CEDA) • 2018 年国家科学基金会 (NSF CAREER) 早期职业发展奖 • 2018 年华盛顿州立大学电子工程与计算机科学学院早期职业奖 • 2018 年杰出沟通、联系和参与奖,华盛顿州立大学 VCEA • 2017 年最佳论文奖提名,IEEE/ACM DATE 会议 • 2017 年社区健康影响奖学金,Pullman 地区医院 • 2016 年国家科学基金会 (NSF CRII) 研究启动计划奖 • 2015 年旅行奖,NSF 早期职业研究人员关于智慧城市 CPS 的研讨会 • 2012 年 WANDA 的主要架构师,授权给 WANDA, Inc.,2019 年被 EMV Capital 收购。 • 2011 年 Sense4Baby 的算法架构师,授权给 Sense4Baby,2014 年被 AirStrip 收购。 • 2011 年最佳论文奖,IEEE RTAS 会议 • 2011 年年度教师奖,圣地亚哥州立大学 (SDSU),生物医学信息学 • 2010 年博士后奖学金,西部健康研究所 • 2009 年最佳海报奖,ACM HotMobile • 2008 年学生旅行补助,IEEE MASS 会议 • 2006 年卓越教学奖,CSE系,阿扎德大学,达马万德 • 2005 年度卓越教学奖,阿扎德大学,达马万德 CSE 系 • 2003 年度创始教员兼系主任,阿扎德大学,达马万德 CSE 系
参考文献 1] Klaus Greff 等人。“LSTM:搜索空间漫游。”IEEE 神经网络和学习系统学报,28 (2015): 2222-2232。 https://doi.org/10.1109/tnnls.2016.2582924。[2] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A.(2014)。更深入地了解卷积。2015 IEEE 计算机视觉和模式识别会议 (CVPR),1-9。 https://doi.org/10.1109/CVPR.2015.7298594。[3] Lee, J., Jun, S., Cho, Y., Lee, H., Kim, G., Seo, J., & Kim, N. (2017)。医学成像中的深度学习:概述。韩国放射学杂志,18,570 - 584。 https://doi.org/10.3348/kjr.2017.18.4.570。[4] Klyuchnikov, N., Trofimov, I., Artemova, E., Salnikov, M., Fedorov, M., & Burnaev, E. (2020)。NAS-Bench-NLP:自然语言处理的神经架构搜索基准。IEEE Access,PP,1-1。https://doi.org/10.1109/access.2022.3169897。[5] Lu, Z., Whalen, I., Dhebar, Y., Deb, K., Goodman, E., Banzhaf, W., & Boddeti, V. (2019)。用于图像分类的深度卷积神经网络的多目标进化设计。IEEE Transactions on Evolutionary Computation,25,277-291。https://doi.org/10.1109/TEVC.2020.3024708。[6] Zhang, T., Lei, C., Zhang, Z., Meng, X., & Chen, C. (2021)。AS-NAS:用于深度学习的具有强化进化算法的自适应可扩展神经架构搜索。IEEE 进化计算学报,25,830-841。 https://doi.org/10.1109/TEVC.2021.3061466。[7] Sun, Y., Sun, X., Fang, Y., Yen, G., & Liu, Y.(2020)。一种用于进化神经架构搜索算法性能预测器的新型训练协议。IEEE 进化计算学报,25,524-536。https://doi.org/10.1109/TEVC.2021.3055076。[8] Verma, M., Sinha, P., Goyal, K., Verma, A., & Susan, S. (2019)。一种用于爬山领域的神经架构搜索的新框架。2019 IEEE 第二届人工智能与知识工程国际会议 (AIKE),1-8。https://doi.org/10.1109/AIKE.2019.00009。[9] Zhang, H., Jin, Y., Cheng, R., & Hao, K. (2020)。通过采样训练和节点继承实现注意力卷积网络的有效进化搜索。IEEE
[C27] Han Lin *,Jaemin Cho *,Abhay Zala和Mohit Bansal。“ CTRL-ADAPTER:一个有效且通用的框架,用于将各种控件适应任何扩散模型”。ICLR(口头)。 2025。 [project] [Paper] [代码]。 [C26] Zaid Khan,Elias Stengel-Eskin,Jaemin Cho和Mohit Bansal。 “ DataEnvgym:具有学生反馈的教师环境中的数据生成代理”。 ICLR(聚光灯)。 2025。 [project] [Paper] [排行榜] [代码]。 [C25] Jialu Li *,Jaemin Cho *,Yi-lin Sung,Jaehong Yoon和Mohit Bansal。 “ SELMA:学习和合并技能 - 特定文本对象专家与自动生成数据”。 神经。 2024。 [project] [Paper] [代码]。 [C24] Abhay Zala *,Jaemin Cho *,Han Lin,Jaehong Yoon和Mohit Bansal。 “ Envgen:通过LLM生成和适应环境以进行训练体现的代理人”。 Colm。 2024。 [project] [Paper] [代码]。 [C23] Abhay Zala,Han Lin,Jaemin Cho和Mohit Bansal。 “图表:通过LLM计划生成开放域的开放式平台图”。 Colm。 2024。 [project] [Paper] [代码]。 [C22] Han Lin,Abhay Zala,Jaemin Cho和Mohit Bansal。 “ VideodirectorGpt:通过LLM指导计划一致的多场景视频生成”。 Colm。 2024。 [project] [Paper] [代码]。 [C21] Heesoo Jang和Jaemin Cho。 “对大语言模型的偏见和危害的评估”。 2024。 [纸]。ICLR(口头)。2025。[project] [Paper] [代码]。[C26] Zaid Khan,Elias Stengel-Eskin,Jaemin Cho和Mohit Bansal。“ DataEnvgym:具有学生反馈的教师环境中的数据生成代理”。ICLR(聚光灯)。2025。[project] [Paper] [排行榜] [代码]。[C25] Jialu Li *,Jaemin Cho *,Yi-lin Sung,Jaehong Yoon和Mohit Bansal。“ SELMA:学习和合并技能 - 特定文本对象专家与自动生成数据”。神经。2024。[project] [Paper] [代码]。[C24] Abhay Zala *,Jaemin Cho *,Han Lin,Jaehong Yoon和Mohit Bansal。“ Envgen:通过LLM生成和适应环境以进行训练体现的代理人”。Colm。 2024。 [project] [Paper] [代码]。 [C23] Abhay Zala,Han Lin,Jaemin Cho和Mohit Bansal。 “图表:通过LLM计划生成开放域的开放式平台图”。 Colm。 2024。 [project] [Paper] [代码]。 [C22] Han Lin,Abhay Zala,Jaemin Cho和Mohit Bansal。 “ VideodirectorGpt:通过LLM指导计划一致的多场景视频生成”。 Colm。 2024。 [project] [Paper] [代码]。 [C21] Heesoo Jang和Jaemin Cho。 “对大语言模型的偏见和危害的评估”。 2024。 [纸]。Colm。2024。[project] [Paper] [代码]。[C23] Abhay Zala,Han Lin,Jaemin Cho和Mohit Bansal。“图表:通过LLM计划生成开放域的开放式平台图”。Colm。 2024。 [project] [Paper] [代码]。 [C22] Han Lin,Abhay Zala,Jaemin Cho和Mohit Bansal。 “ VideodirectorGpt:通过LLM指导计划一致的多场景视频生成”。 Colm。 2024。 [project] [Paper] [代码]。 [C21] Heesoo Jang和Jaemin Cho。 “对大语言模型的偏见和危害的评估”。 2024。 [纸]。Colm。2024。[project] [Paper] [代码]。[C22] Han Lin,Abhay Zala,Jaemin Cho和Mohit Bansal。“ VideodirectorGpt:通过LLM指导计划一致的多场景视频生成”。Colm。 2024。 [project] [Paper] [代码]。 [C21] Heesoo Jang和Jaemin Cho。 “对大语言模型的偏见和危害的评估”。 2024。 [纸]。Colm。2024。[project] [Paper] [代码]。[C21] Heesoo Jang和Jaemin Cho。“对大语言模型的偏见和危害的评估”。2024。[纸]。国际传播协会(ICA)(高级论文奖)。[C20] Yasumasa onoe,Sunayana Rane,Zachary Berger,Yonatan Bitton,Jaemin Cho,Roopal Garg,Alexander Ku,Zarana Parekh,Jordi Pontuset,Jordi Pont-Tuset,Garrett Tanzer,Su Wang和Jason Baldridge。“ docci:连接和对比图像的描述”。ECCV。 2024。 [Project] [Paper] [DataSet]。 [C19] David Wan,Jaemin Cho,Elias Stengel-Eskin和Mohit Bansal。 “对比区域指导:在没有训练的情况下改善视觉模型的接地”。 ECCV。 2024。 [project] [Paper] [代码]。 [C18] Qin Liu,Jaemin Cho,Mohit Bansal和Marc Niethammer。 “以低潜伏期,高质量和不同的提示来重新思考交互式图像分割”。 CVPR。 2024。 [project] [Paper] [代码]。 [C17] Jaemin Cho,Yushi Hu,Roopal Garg,Peter Anderson,Ranjay Krishna,Jason Baldridge,Mohit Bansal,Jordi Pont-Tuset和Su Wang。 “ Davidsonian场景图:在文本到图像生成的细粒度评估中提高可靠性”。 ICLR。 2024。 [project] [Paper] [代码]。 [C16] Jaemin Cho,Abhay Zala和Mohit Bansal。 “用于文本到图像生成和评估的视觉编程”。 神经。 2023。 [project] [Paper] [VPGEN代码] [VPEVAL代码]。 [C15] Shoubin Yu,Jaemin Cho,Prateek Yadav和Mohit Bansal。 “用于视频本地化和问题回答的自链图像模型”。 神经。 2023。ECCV。2024。[Project] [Paper] [DataSet]。[C19] David Wan,Jaemin Cho,Elias Stengel-Eskin和Mohit Bansal。“对比区域指导:在没有训练的情况下改善视觉模型的接地”。ECCV。 2024。 [project] [Paper] [代码]。 [C18] Qin Liu,Jaemin Cho,Mohit Bansal和Marc Niethammer。 “以低潜伏期,高质量和不同的提示来重新思考交互式图像分割”。 CVPR。 2024。 [project] [Paper] [代码]。 [C17] Jaemin Cho,Yushi Hu,Roopal Garg,Peter Anderson,Ranjay Krishna,Jason Baldridge,Mohit Bansal,Jordi Pont-Tuset和Su Wang。 “ Davidsonian场景图:在文本到图像生成的细粒度评估中提高可靠性”。 ICLR。 2024。 [project] [Paper] [代码]。 [C16] Jaemin Cho,Abhay Zala和Mohit Bansal。 “用于文本到图像生成和评估的视觉编程”。 神经。 2023。 [project] [Paper] [VPGEN代码] [VPEVAL代码]。 [C15] Shoubin Yu,Jaemin Cho,Prateek Yadav和Mohit Bansal。 “用于视频本地化和问题回答的自链图像模型”。 神经。 2023。ECCV。2024。[project] [Paper] [代码]。[C18] Qin Liu,Jaemin Cho,Mohit Bansal和Marc Niethammer。“以低潜伏期,高质量和不同的提示来重新思考交互式图像分割”。CVPR。2024。[project] [Paper] [代码]。[C17] Jaemin Cho,Yushi Hu,Roopal Garg,Peter Anderson,Ranjay Krishna,Jason Baldridge,Mohit Bansal,Jordi Pont-Tuset和Su Wang。“ Davidsonian场景图:在文本到图像生成的细粒度评估中提高可靠性”。ICLR。 2024。 [project] [Paper] [代码]。 [C16] Jaemin Cho,Abhay Zala和Mohit Bansal。 “用于文本到图像生成和评估的视觉编程”。 神经。 2023。 [project] [Paper] [VPGEN代码] [VPEVAL代码]。 [C15] Shoubin Yu,Jaemin Cho,Prateek Yadav和Mohit Bansal。 “用于视频本地化和问题回答的自链图像模型”。 神经。 2023。ICLR。2024。[project] [Paper] [代码]。[C16] Jaemin Cho,Abhay Zala和Mohit Bansal。“用于文本到图像生成和评估的视觉编程”。神经。2023。[project] [Paper] [VPGEN代码] [VPEVAL代码]。[C15] Shoubin Yu,Jaemin Cho,Prateek Yadav和Mohit Bansal。“用于视频本地化和问题回答的自链图像模型”。神经。2023。[Paper] [代码]。[C14] Zhenhailong Wang,Ansel Blume,Sha Li,Genglin Liu,Jaemin Cho,Zineng Tang,Mohit Bansal和Heng Ji。“ paxion:在视频语言基础模型中修补动作知识”。神经(聚光灯)。2023。[Paper] [代码]。