与一群牙医和牙科学生一起前往墨西哥阿托亚克,向否则无法获得此类服务的人群提供牙科护理。牙科团队平均每周要照顾300-400名患者。护理包括馅料和冠,根管,牙齿拔牙,切口和排水,组织活检,固定器,牙套,缩放,缩放,根计划以及急性感染或病变,牙齿和桥梁,清洁,清洁以及有关适当刷牙和牙线的指导。Blanca的房屋,医疗任务旅行 - 2011年8月
Fernández, EF、Chemisana, D.、Micheli, L. 和 Almonacid, F. 2019,“污垢的光谱性质及其对基于多结的聚光系统的影响”,《太阳能材料与太阳能电池》,第 201 卷。Keshri, S.、Marín-Sáez, J.、Naydenova, I.、Murphy, K.、Atencia, J.、Chemisana, D.、Garner, S.、Collados, MV 和 Martin, S. 2020,“堆叠体全息光栅用于扩展 LED 和太阳能应用中的工作波长范围”,《应用光学》,第 59 卷,第 8 期,第 2569-2579 页。 Lamnatou, C.、Notton, G.、Chemisana, D. 和 Cristofari, C. 2020,“建筑一体化光伏 (BIPV) 和建筑一体化光伏/热能 (BIPVT) 装置的存储系统:环境概况和其他方面”,《整体环境科学》,第 699 卷。Martinez, RG、Chemisana, D. 和 Arrien, AU 2019,“建筑物多维传热的动态性能评估”,《建筑工程杂志》,第 26 卷。Parent, L.、Riverola, A.、Chemisana, D.、Dollet, A. 和 Vossier, A. 2019,“多结太阳能电池的微调:深入评估”,IEEE 光伏杂志,第 9 卷,第 6 期,第 1637-1643 页。
2012 年至今 德克萨斯大学奥斯汀分校 Seth R. Bank 教授 研究生助理 先进半导体外延实验室 – 研究和开发使用分子束外延的高应变 III-V 和稀释双胺 III-V 半导体中红外(3-5 µm)光电材料和器件的晶体生长技术。 – 演示了具有无铝有源区的 GaSb 基 I 型二极管激光器的最长波长发射(>3.6 µm)。 – 演示了 GaInAsSbBi 合金的首次外延生长和首次室温光致发光。 – 开发了基于 III-V 的半导体激光器的器件生长和制造工艺。 – 设计和实施工具和技术来维护、修理和操作两个分子束外延系统,同时避免耗时的真空系统烘烤。 – 设计并建造了具有亚皮秒分辨率的泵浦探测传输测试台,用于测量半导体中的载流子复合寿命。 – 通过添加自动测试功能改进了多个实验测试站。 – 将未充分利用的实验室空间改造成傅里叶变换红外 (FTIR) 光谱和红外显微镜分析站。 – 监督和指导参加夏季和学期研究体验的八个人的工作。
1。Lee J. †,Cooley D.,Wagner A.M.,Liston G.E. (2024+)通过参数的线性映射来投射未来的校准方法。 被接受的环境和生态统计。 2024年10月25日。 2。 Mhatre N.†,Cooley D.(2024)转换了时间序列极端的线性模型。 时间序列分析杂志,45,671-690。 https://doi.org/10.1111/jtsa.12732。 3。 Wixson,T。P.†,Cooley,D。(2023)季节性野生野生风险对变化的归因:统计极端方法。 应用气象与气候学杂志,62,1511-1521。 https://doi.org/10.1175/jamc-d-23-0072.1。 4。 Rohrbeck C.,Cooley D.(2023)使用极端主管模拟洪水事件集。 应用统计的年鉴,17:1333–1352 https://doi.org/10.1214/22-AOAS1672。 5。 Wagner A.M.,Bennett K.E.,Liston G.E.,Hiemstra C.A.和Cooley D.(2021)雪地占主导地位的极端变化的多个指标,美国水域Yakima River盆地地区,美国水,13:2608。 doi:0.3390/W13192608。 6。 Rutherford J.S,Sherwin E.D.,Ravikumar A.P.,Heath G.A.,Englander J.,Cooley D.,Lyon D.,Omara M.,Langt Q.,Brandt A.R. (2021)缩小差距:解释美国石油和天然气生产段甲烷库存的持续估计。 自然通讯,12:4715。 https://doi.org/10.1038/s41467-021-25017-4。 7。 修复M.†,Cooley D.,Thibaud E.(2020)同时进行空间验证的自回归模型。 环境,32:e2656。Lee J.†,Cooley D.,Wagner A.M.,Liston G.E.(2024+)通过参数的线性映射来投射未来的校准方法。被接受的环境和生态统计。2024年10月25日。2。Mhatre N.†,Cooley D.(2024)转换了时间序列极端的线性模型。时间序列分析杂志,45,671-690。 https://doi.org/10.1111/jtsa.12732。3。Wixson,T。P.†,Cooley,D。(2023)季节性野生野生风险对变化的归因:统计极端方法。应用气象与气候学杂志,62,1511-1521。 https://doi.org/10.1175/jamc-d-23-0072.1。4。Rohrbeck C.,Cooley D.(2023)使用极端主管模拟洪水事件集。应用统计的年鉴,17:1333–1352 https://doi.org/10.1214/22-AOAS1672。5。Wagner A.M.,Bennett K.E.,Liston G.E.,Hiemstra C.A.和Cooley D.(2021)雪地占主导地位的极端变化的多个指标,美国水域Yakima River盆地地区,美国水,13:2608。 doi:0.3390/W13192608。 6。 Rutherford J.S,Sherwin E.D.,Ravikumar A.P.,Heath G.A.,Englander J.,Cooley D.,Lyon D.,Omara M.,Langt Q.,Brandt A.R. (2021)缩小差距:解释美国石油和天然气生产段甲烷库存的持续估计。 自然通讯,12:4715。 https://doi.org/10.1038/s41467-021-25017-4。 7。 修复M.†,Cooley D.,Thibaud E.(2020)同时进行空间验证的自回归模型。 环境,32:e2656。Wagner A.M.,Bennett K.E.,Liston G.E.,Hiemstra C.A.和Cooley D.(2021)雪地占主导地位的极端变化的多个指标,美国水域Yakima River盆地地区,美国水,13:2608。 doi:0.3390/W13192608。6。Rutherford J.S,Sherwin E.D.,Ravikumar A.P.,Heath G.A.,Englander J.,Cooley D.,Lyon D.,Omara M.,Langt Q.,Brandt A.R. (2021)缩小差距:解释美国石油和天然气生产段甲烷库存的持续估计。 自然通讯,12:4715。 https://doi.org/10.1038/s41467-021-25017-4。 7。 修复M.†,Cooley D.,Thibaud E.(2020)同时进行空间验证的自回归模型。 环境,32:e2656。Rutherford J.S,Sherwin E.D.,Ravikumar A.P.,Heath G.A.,Englander J.,Cooley D.,Lyon D.,Omara M.,Langt Q.,Brandt A.R.(2021)缩小差距:解释美国石油和天然气生产段甲烷库存的持续估计。自然通讯,12:4715。 https://doi.org/10.1038/s41467-021-25017-4。7。修复M.†,Cooley D.,Thibaud E.(2020)同时进行空间验证的自回归模型。环境,32:e2656。https://doi.org/10.1002/env.2656 8。 Yuen R.,Stoev,S.,Cooley D.(2020)极高价值的分布鲁棒推断。 保险:数学与经济学,92:70-89。 https://doi.org/10.1016/j.insmatheco.2020.03.003 9。 江Y.,Cooley D.,Wehner M.P. (2020)主要成分分析,用于极端和对美国降水的应用。 气候杂志,33(15):6441-6451。 https://doi.org/10.1175/jcli-d-19-0413.1 10。 Cooley D.,Thibaud E.(2019)。 对高维度的依赖性分解。 Biometrika,106:587-604。 doi:10.1093/biomet/asz028。 11。 Hewitt J. †,Fix M.J.†,Hoeting J.A.,Cooley D.S. (2019)。 通过加权的可能性,潜在的空间极端模型提高了回报水平的估计。 jabes; 24:426-443。 doi:10.1007/s13253-019-00356-4 12。 Huang W.K.,Cooley D.S.,Ebert-upho虫,Chen C.,Chatterjee S.(2019)极端依赖的新探索工具:CHI网络和年度极好网络。 jabes; 24:484-501。 doi:10.1007/s13253-019-00356-4 13。 Cooley D.,Thibaud E.,Castillo F.,Wehner M.F. (2019)。 一种非参数方法,用于极端双变量超级概率的隔离,22:373-390; doi:10.1007/s10687-019-00348-0。 14。 Timmermans B.,Wehner M.,Cooley D.,O'Brien T.,Krishnan H.(2018)。 网格降水数据集中极端的一致性。 气候动力学,52:6651-6670。 doi:10.1007/s00382-018-4537-0。 15。https://doi.org/10.1002/env.2656 8。Yuen R.,Stoev,S.,Cooley D.(2020)极高价值的分布鲁棒推断。保险:数学与经济学,92:70-89。 https://doi.org/10.1016/j.insmatheco.2020.03.003 9。江Y.,Cooley D.,Wehner M.P. (2020)主要成分分析,用于极端和对美国降水的应用。 气候杂志,33(15):6441-6451。 https://doi.org/10.1175/jcli-d-19-0413.1 10。 Cooley D.,Thibaud E.(2019)。 对高维度的依赖性分解。 Biometrika,106:587-604。 doi:10.1093/biomet/asz028。 11。 Hewitt J. †,Fix M.J.†,Hoeting J.A.,Cooley D.S. (2019)。 通过加权的可能性,潜在的空间极端模型提高了回报水平的估计。 jabes; 24:426-443。 doi:10.1007/s13253-019-00356-4 12。 Huang W.K.,Cooley D.S.,Ebert-upho虫,Chen C.,Chatterjee S.(2019)极端依赖的新探索工具:CHI网络和年度极好网络。 jabes; 24:484-501。 doi:10.1007/s13253-019-00356-4 13。 Cooley D.,Thibaud E.,Castillo F.,Wehner M.F. (2019)。 一种非参数方法,用于极端双变量超级概率的隔离,22:373-390; doi:10.1007/s10687-019-00348-0。 14。 Timmermans B.,Wehner M.,Cooley D.,O'Brien T.,Krishnan H.(2018)。 网格降水数据集中极端的一致性。 气候动力学,52:6651-6670。 doi:10.1007/s00382-018-4537-0。 15。江Y.,Cooley D.,Wehner M.P.(2020)主要成分分析,用于极端和对美国降水的应用。气候杂志,33(15):6441-6451。 https://doi.org/10.1175/jcli-d-19-0413.1 10。Cooley D.,Thibaud E.(2019)。对高维度的依赖性分解。Biometrika,106:587-604。doi:10.1093/biomet/asz028。11。Hewitt J. †,Fix M.J.†,Hoeting J.A.,Cooley D.S. (2019)。 通过加权的可能性,潜在的空间极端模型提高了回报水平的估计。 jabes; 24:426-443。 doi:10.1007/s13253-019-00356-4 12。 Huang W.K.,Cooley D.S.,Ebert-upho虫,Chen C.,Chatterjee S.(2019)极端依赖的新探索工具:CHI网络和年度极好网络。 jabes; 24:484-501。 doi:10.1007/s13253-019-00356-4 13。 Cooley D.,Thibaud E.,Castillo F.,Wehner M.F. (2019)。 一种非参数方法,用于极端双变量超级概率的隔离,22:373-390; doi:10.1007/s10687-019-00348-0。 14。 Timmermans B.,Wehner M.,Cooley D.,O'Brien T.,Krishnan H.(2018)。 网格降水数据集中极端的一致性。 气候动力学,52:6651-6670。 doi:10.1007/s00382-018-4537-0。 15。Hewitt J.†,Fix M.J.†,Hoeting J.A.,Cooley D.S.(2019)。通过加权的可能性,潜在的空间极端模型提高了回报水平的估计。jabes; 24:426-443。doi:10.1007/s13253-019-00356-4 12。Huang W.K.,Cooley D.S.,Ebert-upho虫,Chen C.,Chatterjee S.(2019)极端依赖的新探索工具:CHI网络和年度极好网络。 jabes; 24:484-501。 doi:10.1007/s13253-019-00356-4 13。 Cooley D.,Thibaud E.,Castillo F.,Wehner M.F. (2019)。 一种非参数方法,用于极端双变量超级概率的隔离,22:373-390; doi:10.1007/s10687-019-00348-0。 14。 Timmermans B.,Wehner M.,Cooley D.,O'Brien T.,Krishnan H.(2018)。 网格降水数据集中极端的一致性。 气候动力学,52:6651-6670。 doi:10.1007/s00382-018-4537-0。 15。Huang W.K.,Cooley D.S.,Ebert-upho虫,Chen C.,Chatterjee S.(2019)极端依赖的新探索工具:CHI网络和年度极好网络。jabes; 24:484-501。doi:10.1007/s13253-019-00356-4 13。Cooley D.,Thibaud E.,Castillo F.,Wehner M.F. (2019)。 一种非参数方法,用于极端双变量超级概率的隔离,22:373-390; doi:10.1007/s10687-019-00348-0。 14。 Timmermans B.,Wehner M.,Cooley D.,O'Brien T.,Krishnan H.(2018)。 网格降水数据集中极端的一致性。 气候动力学,52:6651-6670。 doi:10.1007/s00382-018-4537-0。 15。Cooley D.,Thibaud E.,Castillo F.,Wehner M.F.(2019)。一种非参数方法,用于极端双变量超级概率的隔离,22:373-390; doi:10.1007/s10687-019-00348-0。14。Timmermans B.,Wehner M.,Cooley D.,O'Brien T.,Krishnan H.(2018)。网格降水数据集中极端的一致性。气候动力学,52:6651-6670。doi:10.1007/s00382-018-4537-0。15。修复M.†,Cooley D.,Sain S.R.,Tebaldi C.(2018)。在RCP8.5和RCP4.5下,美国降水极端的比较与模式缩放的应用。气候变化,146(3),335-347。doi:10.1007/s10584-016-1656-7。
飞秒光谱学夏季和2012年PI:Marcos Dantus教授,部。。2012年夏季:具有新型飞秒纤维激光器源的激光诱导的分解光谱(LIB),没有放大器。引入了一种新型的模型和测量技术,用于飞秒libs的消融阈值。(请参阅上面的出版物。)2011年夏季:配置了一个7飞秒的激光系统,用于单光束相干抗螺旋体拉曼光谱法(CARS)。开发了进行僵化,温度,分子组成和浓度的实时测量的模型。
02/2010 - 03/2014安达卢西亚地区经济,创新和科学部,奖#P09-TIC-5123 F.J. VICO。Genex:用于建模控制胚胎发育的遗传调节网络的新型计算智能技术。角色:其他人员 - 研究生总资金:€432,535
人们通常不知道微软股票的价格会涨还是跌?”)或他们自己的行为(例如,“我在未来 10 年内会离婚吗?”)。人们忽视了一种重要的预测形式,即人们预测自己感受的能力。我们认为,人们真正想知道的是他们的幸福和幸福水平,许多关于未来事件和行为的问题实际上是关于这些情感状态的问题的代理。人们希望能够预测他们是会结婚、离婚还是生孩子,因为他们相信这些生活事件是他们幸福的关键决定因素。他们想知道微软股票的未来价格,这样他们就可以赚钱,他们相信这会增加他们的幸福感。追求幸福是人类最基本的动机之一,如果人们有运转良好的水晶球,他们会经常看水晶球,试图实现这个目标。
2020 首席研究员:奖学金和创造性活动补助金,加州州立大学圣马科斯分校研究生院。简短的正念训练是否会通过同情心增加亲社会行为?通过实验操纵和事件相关电位框架识别同情心机制。($2686.08)2019 首席研究员:课程重新设计补助金,加州州立大学圣马科斯分校教师中心。心理学入门统计学课程重新设计($6000)2017 – 2019 首席研究员:教师发展补助金,加州州立大学圣马科斯分校人文、艺术、行为和社会科学学院。正念是否会增加群体间的善意?为研究和创造性活动购买小型设备($3,941.73,共 3 个奖项)2018 首席研究员:补助金提案种子资金,加州州立大学圣马科斯分校研究生院。测试与事件相关的正念训练在促进群体间亲社会性方面的潜在机制:购买设备进行试点测试,用于未来的资助提案 ($3,150) 2014 – 2016 首席研究员:Varela Grant,心智与生命研究所。弥合同理心鸿沟:短期正念训练对帮助有需要的外来成员的影响 ($15,000 直接资助) 2014 – 2016 联合研究员:弗吉尼亚大学沉思科学中心资助。正念作为缓解同伴排斥痛苦的缓冲剂 ($11,000 直接资助)